Fowler–Noll–Vo hash function¶
具體請參見 https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function。
2018 網鼎杯 hashcoll¶
其實這道題是從 NSU Crypto 抄過來的,https://nsucrypto.nsu.ru/archive/2017/problems_solution,具體的 wp 之前 hellman 也寫了,https://gist.github.com/hellman/9bf8376cd04e7a8dd2ec7be1947261e9。
簡單看一下題目
h0 = 45740974929179720441799381904411404011270459520712533273451053262137196814399
# 2**168 + 355
g = 374144419156711147060143317175368453031918731002211L
def shitty_hash(msg):
h = h0
msg = map(ord, msg)
for i in msg:
h = (h + i) * g
# This line is just to screw you up :))
h = h & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
return h - 0xe6168647f636
題目希望我們給出兩個消息,其哈希值相同。如果我們將該函數展開的話,那麼
hash(m)=h_0g^n+x_1g^n+x_2g_{n-1}+...+x_ng \bmod 2^{256}
假設兩個消息的 hash 值相同那麼
h_0g^n+x_1g^n+x_2g_{n-1}+...+x_ng \equiv h_0g^n+y_1g^n+y_2g_{n-1}+...+y_ng\bmod 2^{256}
進而
(x_1-y_1)g^{n-1}+(x_2-y_2)g^{n-2}+...+(x_n-y_n)g^0 \equiv 0 \bmod 2^{256}
即我們只需要找到一個 n 維向量 z_i=x_i-y_i,滿足上述等式即可,我們可以進一步將其化爲
z_1g^{n-1}+z_2g^{n-2}+...+z_ng^0-k*2^{256}=0
即找到一組向量滿足上述這個式子。這可以認爲是 LLL Paper 中第二個例子的簡單情況(參見格問題部分)。
那麼我們可以快速構造矩陣,如下
之後我們使用LLL 算法即可獲得兩個一樣的哈希值
from sage.all import *
mod = 2**256
h0 = 45740974929179720441799381904411404011270459520712533273451053262137196814399
g = 2**168 + 355
def shitty_hash(msg):
h = h0
msg = map(ord, msg)
for i in msg:
h = (h + i) * g
# This line is just to screw you up :))
h = h & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
return h - 0xe6168647f636
K = 2**200
N = 50
base_str = 'a' * N
base = map(ord, base_str)
m = Matrix(ZZ, N + 1, N + 2)
for i in xrange(N + 1):
ge = ZZ(pow(g, N - i, mod))
m[i, i] = 1
m[i, N + 1] = ZZ(ge * K)
m[i, N + 1] = ZZ(K * mod)
ml = m.LLL()
ttt = ml.rows()[0]
print "result:", ttt
if ttt[-1] != 0:
print "Zero not reached, increase K"
exit()
else:
msg = []
for i in xrange(N):
msg.append(base[i] + ttt[i])
if not (0 <= msg[i] <= 255):
print "Need more bytes!"
quit()
print msg
other = ''.join(map(chr, msg))
print shitty_hash(base_str)
print shitty_hash(other)
注意不能直接僅僅使用 pow(g, N - i, mod),不然生成的數會在 mod 對應的域中,這真是個大坑。
如下
➜ hashcoll sage exp.sage
result: (15, -14, 17, 14, 6, 0, 12, 21, 8, 29, 6, -4, -9, 10, -2, -12, -6, 0, -12, 13, -28, -28, -24, -3, 6, -5, -16, 15, 17, -14, 3, -2, -16, -25, 3, -21, -27, -9, 16, 5, -1, 0, -3, -4, -4, -19, 6, 8, 0, 0, 0, 0)
[112, 83, 114, 111, 103, 97, 109, 118, 105, 126, 103, 93, 88, 107, 95, 85, 91, 97, 85, 110, 69, 69, 73, 94, 103, 92, 81, 112, 114, 83, 100, 95, 81, 72, 100, 76, 70, 88, 113, 102, 96, 97, 94, 93, 93, 78, 103, 105, 97, 97]
106025341237231370726407656306665079105509255639964756437758376184556498283725
106025341237231370726407656306665079105509255639964756437758376184556498283725
即成功。