RSA 复杂题目¶
Warning
The current page still doesn't have a translation for this language.
You can read it through Google Translate.
Besides, you can also help to translate it: Contributing.
2018 Tokyo Western Mixed Cipher¶
题目给的信息如下所示:
- 每次交互可以维持的时间长度约为 5 分钟
- 每次交互中中n是确定的 1024 bit,但是未知, e 为 65537
- 使用 aes 加密了 flag,密钥和 IV 均不知道
- 每次密钥是固定的,但是 IV 每次都会随机
- 可以使用 encrypt 功能随意使用 rsa 和 aes 进行加密,其中每次加密都会对 aes 的 iv 进行随机
- 可以使用 decrypt 对随意的密文进行解密,但是只能知道最后一个字节是什么
- 可以使用 print_flag 获取 flag 密文
- 可以使用 print_key 获取 rsa 加密的 aes 密钥
本题目看似一个题目,实则是 3 个题目,需要分步骤解决。在此之前,我們準備好交互的函數
def get_enc_key(io):
io.read_until("4: get encrypted keyn")
io.writeline("4")
io.read_until("here is encrypted key :)n")
c=int(io.readline()[:-1],16)
return c
def encrypt_io(io,p):
io.read_until("4: get encrypted keyn")
io.writeline("1")
io.read_until("input plain text: ")
io.writeline(p)
io.read_until("RSA: ")
rsa_c=int(io.readline()[:-1],16)
io.read_until("AES: ")
aes_c=io.readline()[:-1].decode("hex")
return rsa_c,aes_c
def decrypt_io(io,c):
io.read_until("4: get encrypted keyn")
io.writeline("2")
io.read_until("input hexencoded cipher text: ")
io.writeline(long_to_bytes(c).encode("hex"))
io.read_until("RSA: ")
return io.read_line()[:-1].decode("hex")
GCD attack n¶
第一步我们需要把没有给出的 n 算出来,因为我们可以利用 encrypt 功能对我们输入的明文 x 进行 rsa 加密,那么可以利用整除的性质算 n
因为x ^ e = c mod n
所以 n | x ^ e - c
def get_n(io):
rsa_c,aes_c=encrypt_io(io,long_to_bytes(2))
n=pow(2,65537)-rsa_c
for i in range(3,6):
rsa_c, aes_c = encrypt_io(io, long_to_bytes(i))
n=primefac.gcd(n,pow(i,65537)-rsa_c)
return n
可以利用加密进行 check
def check_n(io,n):
rsa_c, aes_c = encrypt_io(io, "123")
if pow(bytes_to_long("123"), e, n)==rsa_c:
return True
else:
return False
RSA parity oracle¶
利用 leak 的的最后一个字节,我们可以进行选择密文攻击,使用 RSA parity oracle 回复 aes 的秘钥
def guess_m(io,n,c):
k=1
lb=0
ub=n
while ub!=lb:
print lb,ub
tmp = c * gmpy2.powmod(2, k*e, n) % n
if ord(decrypt_io(io,tmp)[-1])%2==1:
lb = (lb + ub) / 2
else:
ub = (lb + ub) / 2
k+=1
print ub,len(long_to_bytes(ub))
return ub
PRNG Predict¶
这里我们可以解密 flag 的16字节之后的内容了,但是前16个字节没有 IV 是解密不了的。这时我们可以发现,IV 生成使用的随机数使用了 getrandbits,并且我们可以获取到足够多的随机数量,那么我们可以进行 PRNG 的 predict,从而直接获取随机数
这里使用了一个现成的的 java 进行 PRNG 的 Predict
public class Main {
static int[] state;
static int currentIndex;
40huo
public static void main(String[] args) {
state = new int[624];
currentIndex = 0;
// initialize(0);
// for (int i = 0; i < 5; i++) {
// System.out.println(state[i]);
// }
// for (int i = 0; i < 5; i++) {
// System.out.println(nextNumber());
// }
if (args.length != 624) {
System.err.println("must be 624 args");
System.exit(1);
}
int[] arr = new int[624];
for (int i = 0; i < args.length; i++) {
arr[i] = Integer.parseInt(args[i]);
}
rev(arr);
for (int i = 0; i < 6240huo4; i++) {
System.out.println(state[i]);
}
// System.out.println("currentIndex " + currentIndex);
// System.out.println("state[currentIndex] " + state[currentIndex]);
// System.out.println("next " + nextNumber());
// want -2065863258
}
static void nextState() {
// Iterate through the state
for (int i = 0; i < 624; i++) {
// y is the first bit of the current number,
// and the last 31 bits of the next number
int y = (state[i] & 0x80000000)
+ (state[(i + 1) % 624] & 0x7fffffff);
// first bitshift y by 1 to the right
int next = y >>> 1;
// xor it with the 397th next number
next ^= state[(i + 397) % 624];
// if y is odd, xor with magic number
if ((y & 1L) == 1L) {
next ^= 0x9908b0df;
}
// now we have the result
state[i] = next;
}
}
static int nextNumber() {
currentIndex++;
int tmp = state[currentIndex];
tmp ^= (tmp >>> 11);
tmp ^= (tmp << 7) & 0x9d2c5680;
tmp ^= (tmp << 15) & 0xefc60000;
tmp ^= (tmp >>> 18);
return tmp;
}
static void initialize(int seed) {
// http://code.activestate.com/recipes/578056-mersenne-twister/
// global MT
// global bitmask_1
// MT[0] = seed
// for i in xrange(1,624):
// MT[i] = ((1812433253 * MT[i-1]) ^ ((MT[i-1] >> 30) + i)) & bitmask_1
// copied Python 2.7's impl (probably uint problems)
state[0] = seed;
for (int i = 1; i < 624; i++) {
state[i] = ((1812433253 * state[i - 1]) ^ ((state[i - 1] >> 30) + i)) & 0xffffffff;
}
}
static int unBitshiftRightXor(int value, int shift) {
// we part of the value we are up to (with a width of shift bits)
int i = 0;
// we accumulate the result here
int result = 0;
// iterate until we've done the full 32 bits
while (i * shift < 32) {
// create a mask for this part
int partMask = (-1 << (32 - shift)) >>> (shift * i);
// obtain the part
int part = value & partMask;
// unapply the xor from the next part of the integer
value ^= part >>> shift;
// add the part to the result
result |= part;
i++;
}
return result;
}
static int unBitshiftLeftXor(int value, int shift, int mask) {
// we part of the value we are up to (with a width of shift bits)
int i = 0;
// we accumulate the result here
int result = 0;
// iterate until we've done the full 32 bits
while (i * shift < 32) {
// create a mask for this part
int partMask = (-1 >>> (32 - shift)) << (shift * i);
// obtain the part
int part = value & partMask;
// unapply the xor from the next part of the integer
value ^= (part << shift) & mask;
// add the part to the result
result |= part;
i++;
}
return result;
}
static void rev(int[] nums) {
for (int i = 0; i < 624; i++) {
int value = nums[i];
value = unBitshiftRightXor(value, 18);
value = unBitshiftLeftXor(value, 15, 0xefc60000);
value = unBitshiftLeftXor(value, 7, 0x9d2c5680);
value = unBitshiftRightXor(value, 11);
state[i] = value;
}
}
}
写了一个 python 直接调用 java
from Crypto.Util.number import long_to_bytes,bytes_to_long
def encrypt_io(io,p):
io.read_until("4: get encrypted keyn")
io.writeline("1")
io.read_until("input plain text: ")
io.writeline(p)
io.read_until("RSA: ")
rsa_c=int(io.readline()[:-1],16)
io.read_until("AES: ")
aes_c=io.readline()[:-1].decode("hex")
return rsa_c,aes_c
import subprocess
import random
def get_iv(io):
rsa_c, aes_c=encrypt_io(io,"1")
return bytes_to_long(aes_c[0:16])
def splitInto32(w128):
w1 = w128 & (2**32-1)
w2 = (w128 >> 32) & (2**32-1)
w3 = (w128 >> 64) & (2**32-1)
w4 = (w128 >> 96)
return w1,w2,w3,w4
def sign(iv):
# converts a 32 bit uint to a 32 bit signed int
if(iv&0x80000000):
iv = -0x100000000 + iv
return iv
def get_state(io):
numbers=[]
for i in range(156):
print i
numbers.append(get_iv(io))
observedNums = [sign(w) for n in numbers for w in splitInto32(n)]
o = subprocess.check_output(["java", "Main"] + map(str, observedNums))
stateList = [int(s) % (2 ** 32) for s in o.split()]
r = random.Random()
state = (3, tuple(stateList + [624]), None)
r.setstate(state)
return r.getrandbits(128)
EXP¶
整体攻击代码如下:
from zio import *
import primefac
from Crypto.Util.number import long_to_bytes,bytes_to_long
target=("crypto.chal.ctf.westerns.tokyo",5643)
e=65537
def get_enc_key(io):
io.read_until("4: get encrypted keyn")
io.writeline("4")
io.read_until("here is encrypted key :)n")
c=int(io.readline()[:-1],16)
return c
def encrypt_io(io,p):
io.read_until("4: get encrypted keyn")
io.writeline("1")
io.read_until("input plain text: ")
io.writeline(p)
io.read_until("RSA: ")
rsa_c=int(io.readline()[:-1],16)
io.read_until("AES: ")
aes_c=io.readline()[:-1].decode("hex")
return rsa_c,aes_c
def decrypt_io(io,c):
io.read_until("4: get encrypted keyn")
io.writeline("2")
io.read_until("input hexencoded cipher text: ")
io.writeline(long_to_bytes(c).encode("hex"))
io.read_until("RSA: ")
return io.read_line()[:-1].decode("hex")
def get_n(io):
rsa_c,aes_c=encrypt_io(io,long_to_bytes(2))
n=pow(2,65537)-rsa_c
for i in range(3,6):
rsa_c, aes_c = encrypt_io(io, long_to_bytes(i))
n=primefac.gcd(n,pow(i,65537)-rsa_c)
return n
def check_n(io,n):
rsa_c, aes_c = encrypt_io(io, "123")
if pow(bytes_to_long("123"), e, n)==rsa_c:
return True
else:
return False
import gmpy2
def guess_m(io,n,c):
k=1
lb=0
ub=n
while ub!=lb:
print lb,ub
tmp = c * gmpy2.powmod(2, k*e, n) % n
if ord(decrypt_io(io,tmp)[-1])%2==1:
lb = (lb + ub) / 2
else:
ub = (lb + ub) / 2
k+=1
print ub,len(long_to_bytes(ub))
return ub
io = zio(target, timeout=10000, print_read=COLORED(NONE, 'red'),print_write=COLORED(NONE, 'green'))
n=get_n(io)
print check_n(io,n)
c=get_enc_key(io)
print len(decrypt_io(io,c))==16
m=guess_m(io,n,c)
for i in range(m - 50000,m+50000):
if pow(i,e,n)==c:
aeskey=i
print long_to_bytes(aeskey)[-1]==decrypt_io(io,c)[-1]
print "found aes key",hex(aeskey)
import fuck_r
next_iv=fuck_r.get_state(io)
print "##########################################"
print next_iv
print aeskey
io.interact()
2016 ASIS Find the flag¶
这里我们以 ASIS 2016 线上赛中 Find the flag 为例进行介绍。
文件解压出来,有一个密文,一个公钥,一个 py 脚本。看一下公钥。
➜ RSA openssl rsa -pubin -in pubkey.pem -text -modulus
Public-Key: (256 bit)
Modulus:
00:d8:e2:4c:12:b7:b9:9e:fe:0a:9b:c0:4a:6a:3d:
f5:8a:2a:94:42:69:b4:92:b7:37:6d:f1:29:02:3f:
20:61:b9
Exponent: 12405943493775545863 (0xac2ac3e0ca0f5607)
Modulus=D8E24C12B7B99EFE0A9BC04A6A3DF58A2A944269B492B7376DF129023F2061B9
这么小的一个 N,先分解一下。
p = 311155972145869391293781528370734636009
q = 315274063651866931016337573625089033553
再看给的 py 脚本。
#!/usr/bin/python
import gmpy
from Crypto.Util.number import *
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_v1_5
flag = open('flag', 'r').read() * 30
def ext_rsa_encrypt(p, q, e, msg):
m = bytes_to_long(msg)
while True:
n = p * q
try:
phi = (p - 1)*(q - 1)
d = gmpy.invert(e, phi)
pubkey = RSA.construct((long(n), long(e)))
key = PKCS1_v1_5.new(pubkey)
enc = key.encrypt(msg).encode('base64')
return enc
except:
p = gmpy.next_prime(p**2 + q**2)
q = gmpy.next_prime(2*p*q)
e = gmpy.next_prime(e**2)
p = getPrime(128)
q = getPrime(128)
n = p*q
e = getPrime(64)
pubkey = RSA.construct((long(n), long(e)))
f = open('pubkey.pem', 'w')
f.write(pubkey.exportKey())
g = open('flag.enc', 'w')
g.write(ext_rsa_encrypt(p, q, e, flag))
逻辑很简单,读取 flag,重复 30 遍为密文。随机取 p 和 q,生成一个公钥,写入 pubkey.pem
,再用脚本中的 ext_rsa_encrypt
函数进行加密,最后将密文写入 flag.enc
。
尝试一下解密,提示密文过长,再看加密函数,原来当加密失败时,函数会跳到异常处理,以一定算法重新取更大的 p 和 q,直到加密成功。
那么我们只要也写一个相应的解密函数即可。
#!/usr/bin/python
import gmpy
from Crypto.Util.number import *
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_v1_5
def ext_rsa_decrypt(p, q, e, msg):
m = bytes_to_long(msg)
while True:
n = p * q
try:
phi = (p - 1)*(q - 1)
d = gmpy.invert(e, phi)
privatekey = RSA.construct((long(n), long(e), long(d), long(p), long(q)))
key = PKCS1_v1_5.new(privatekey)
de_error = ''
enc = key.decrypt(msg.decode('base64'), de_error)
return enc
except Exception as error:
print error
p = gmpy.next_prime(p**2 + q**2)
q = gmpy.next_prime(2*p*q)
e = gmpy.next_prime(e**2)
p = 311155972145869391293781528370734636009
q = 315274063651866931016337573625089033553
n = p*q
e = 12405943493775545863
# pubkey = RSA.construct((long(n), long(e)))
# f = open('pubkey.pem', 'w')
# f.write(pubkey.exportKey())
g = open('flag.enc', 'r')
msg = g.read()
flag = ext_rsa_decrypt(p, q, e, msg)
print flag
拿到 flag
ASIS{F4ct0R__N_by_it3rat!ng!}
SCTF RSA1¶
这里我们以 SCTF RSA1 为例进行介绍,首先解压压缩包后,得到如下文件
➜ level0 git:(master) ✗ ls -al
总用量 4
drwxrwxrwx 1 root root 0 7月 30 16:36 .
drwxrwxrwx 1 root root 0 7月 30 16:34 ..
-rwxrwxrwx 1 root root 349 5月 2 2016 level1.passwd.enc
-rwxrwxrwx 1 root root 2337 5月 6 2016 level1.zip
-rwxrwxrwx 1 root root 451 5月 2 2016 public.key
尝试解压缩了一下 level1.zip 现需要密码。然后根据 level1.passwd.enc 可知,应该是我们需要解密这个文件才能得到对应的密码。查看公钥
➜ level0 git:(master) ✗ openssl rsa -pubin -in public.key -text -modulus
Public-Key: (2048 bit)
Modulus:
00:94:a0:3e:6e:0e:dc:f2:74:10:52:ef:1e:ea:a8:
89:d6:f9:8d:01:11:51:db:5e:90:92:48:fd:39:0c:
70:87:24:d8:98:3c:f3:33:1c:ba:c5:61:c2:ce:2c:
5a:f1:5e:65:b2:b2:46:91:56:b6:19:d5:d3:b2:a6:
bb:a3:7d:56:93:99:4d:7e:4c:2f:aa:60:7b:3e:c8:
fc:90:b2:00:62:4b:53:18:5b:a2:30:10:60:a8:21:
ab:61:57:d7:e7:cc:67:1b:4d:cd:66:4c:7d:f1:1a:
2a:1d:5e:50:80:c1:5e:45:12:3a:ba:4a:53:64:d8:
72:1f:84:4a:ae:5c:55:02:e8:8e:56:4d:38:70:a5:
16:36:d3:bc:14:3e:2f:ae:2f:31:58:ba:00:ab:ac:
c0:c5:ba:44:3c:29:70:56:01:6b:57:f5:d7:52:d7:
31:56:0b:ab:0a:e6:8d:ad:08:22:a9:1f:cb:6e:49:
cc:01:4c:12:d2:ab:a3:a5:97:e5:10:49:19:7f:69:
d9:3b:c5:53:53:71:00:18:60:cc:69:1a:06:64:3b:
86:94:70:a9:da:82:fc:54:6b:06:23:43:2d:b0:20:
eb:b6:1b:91:35:5e:53:a6:e5:d8:9a:84:bb:30:46:
b8:9f:63:bc:70:06:2d:59:d8:62:a5:fd:5c:ab:06:
68:81
Exponent: 65537 (0x10001)
Modulus=94A03E6E0EDCF2741052EF1EEAA889D6F98D011151DB5E909248FD390C708724D8983CF3331CBAC561C2CE2C5AF15E65B2B2469156B619D5D3B2A6BBA37D5693994D7E4C2FAA607B3EC8FC90B200624B53185BA2301060A821AB6157D7E7CC671B4DCD664C7DF11A2A1D5E5080C15E45123ABA4A5364D8721F844AAE5C5502E88E564D3870A51636D3BC143E2FAE2F3158BA00ABACC0C5BA443C297056016B57F5D752D731560BAB0AE68DAD0822A91FCB6E49CC014C12D2ABA3A597E51049197F69D93BC5535371001860CC691A06643B869470A9DA82FC546B0623432DB020EBB61B91355E53A6E5D89A84BB3046B89F63BC70062D59D862A5FD5CAB066881
writing RSA key
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAlKA+bg7c8nQQUu8e6qiJ
1vmNARFR216Qkkj9OQxwhyTYmDzzMxy6xWHCzixa8V5lsrJGkVa2GdXTsqa7o31W
k5lNfkwvqmB7Psj8kLIAYktTGFuiMBBgqCGrYVfX58xnG03NZkx98RoqHV5QgMFe
RRI6ukpTZNhyH4RKrlxVAuiOVk04cKUWNtO8FD4vri8xWLoAq6zAxbpEPClwVgFr
V/XXUtcxVgurCuaNrQgiqR/LbknMAUwS0qujpZflEEkZf2nZO8VTU3EAGGDMaRoG
ZDuGlHCp2oL8VGsGI0MtsCDrthuRNV5TpuXYmoS7MEa4n2O8cAYtWdhipf1cqwZo
gQIDAQAB
-----END PUBLIC KEY-----
发现虽然说是 2048 位,但是显然模数没有那么长,尝试分解下,得到
p=250527704258269
q=74891071972884336452892671945839935839027130680745292701175368094445819328761543101567760612778187287503041052186054409602799660254304070752542327616415127619185118484301676127655806327719998855075907042722072624352495417865982621374198943186383488123852345021090112675763096388320624127451586578874243946255833495297552979177208715296225146999614483257176865867572412311362252398105201644557511678179053171328641678681062496129308882700731534684329411768904920421185529144505494827908706070460177001921614692189821267467546120600239688527687872217881231173729468019623441005792563703237475678063375349
然后就可以构造,并且解密,代码如下
from Crypto.PublicKey import RSA
import gmpy2
from base64 import b64decode
p = 250527704258269
q = 74891071972884336452892671945839935839027130680745292701175368094445819328761543101567760612778187287503041052186054409602799660254304070752542327616415127619185118484301676127655806327719998855075907042722072624352495417865982621374198943186383488123852345021090112675763096388320624127451586578874243946255833495297552979177208715296225146999614483257176865867572412311362252398105201644557511678179053171328641678681062496129308882700731534684329411768904920421185529144505494827908706070460177001921614692189821267467546120600239688527687872217881231173729468019623441005792563703237475678063375349
e = 65537
n = p * q
def getprivatekey(n, e, p, q):
phin = (p - 1) * (q - 1)
d = gmpy2.invert(e, phin)
priviatekey = RSA.construct((long(n), long(e), long(d)))
with open('private.pem', 'w') as f:
f.write(priviatekey.exportKey())
def decrypt():
with open('./level1.passwd.enc') as f:
cipher = f.read()
cipher = b64decode(cipher)
with open('./private.pem') as f:
key = RSA.importKey(f)
print key.decrypt(cipher)
#getprivatekey(n, e, p, q)
decrypt()
发现不对
➜ level0 git:(master) ✗ python exp.py
一堆乱码。。
这时候就要考虑其他情况了,一般来说现实中实现的 RSA 都不会直接用原生的 RSA,都会加一些填充比如 OAEP,我们这里试试,修改代码
def decrypt1():
with open('./level1.passwd.enc') as f:
cipher = f.read()
cipher = b64decode(cipher)
with open('./private.pem') as f:
key = RSA.importKey(f)
key = PKCS1_OAEP.new(key)
print key.decrypt(cipher)
果然如此,得到
➜ level0 git:(master) ✗ python exp.py
FaC5ori1ati0n_aTTA3k_p_tOO_sma11
得到解压密码。继续,查看 level1 中的公钥
➜ level1 git:(master) ✗ openssl rsa -pubin -in public.key -text -modulus
Public-Key: (2048 bit)
Modulus:
00:c3:26:59:69:e1:ed:74:d2:e0:b4:9a:d5:6a:7c:
2f:2a:9e:c3:71:ff:13:4b:10:37:c0:6f:56:19:34:
c5:cb:1f:6d:c0:e3:57:3b:47:c4:76:3e:21:a3:b0:
11:11:78:d4:ee:4f:e8:99:2b:15:cb:cb:d7:73:e4:
f9:a6:28:20:fd:db:8c:ea:16:ed:67:c2:48:12:6e:
4b:01:53:4a:67:cb:22:23:3b:34:2e:af:13:ef:93:
45:16:2b:00:9f:e0:4b:d1:90:c9:2c:27:9a:34:c3:
3f:d7:ee:40:f5:82:50:39:aa:8c:e9:c2:7b:f4:36:
e3:38:9d:04:50:db:a9:b7:3f:4b:2a:d6:8a:2a:5c:
87:2a:eb:74:35:98:6a:9c:e4:52:cb:93:78:d2:da:
39:83:f3:0c:d1:65:1e:66:9c:40:56:06:0d:58:fc:
41:64:5e:06:da:83:d0:3b:06:42:70:da:38:53:e0:
54:35:53:ce:de:79:4a:bf:f5:3b:e5:53:7f:6c:18:
12:67:a9:de:37:7d:44:65:5e:68:0a:78:39:3d:bb:
00:22:35:0e:a3:94:e6:94:15:1a:3d:39:c7:50:0e:
b1:64:a5:29:a3:69:41:40:69:94:b0:0d:1a:ea:9a:
12:27:50:ee:1e:3a:19:b7:29:70:b4:6d:1e:9d:61:
3e:7d
Exponent: 65537 (0x10001)
Modulus=C3265969E1ED74D2E0B49AD56A7C2F2A9EC371FF134B1037C06F561934C5CB1F6DC0E3573B47C4763E21A3B0111178D4EE4FE8992B15CBCBD773E4F9A62820FDDB8CEA16ED67C248126E4B01534A67CB22233B342EAF13EF9345162B009FE04BD190C92C279A34C33FD7EE40F5825039AA8CE9C27BF436E3389D0450DBA9B73F4B2AD68A2A5C872AEB7435986A9CE452CB9378D2DA3983F30CD1651E669C4056060D58FC41645E06DA83D03B064270DA3853E0543553CEDE794ABFF53BE5537F6C181267A9DE377D44655E680A78393DBB0022350EA394E694151A3D39C7500EB164A529A36941406994B00D1AEA9A122750EE1E3A19B72970B46D1E9D613E7D
writing RSA key
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwyZZaeHtdNLgtJrVanwv
Kp7Dcf8TSxA3wG9WGTTFyx9twONXO0fEdj4ho7AREXjU7k/omSsVy8vXc+T5pigg
/duM6hbtZ8JIEm5LAVNKZ8siIzs0Lq8T75NFFisAn+BL0ZDJLCeaNMM/1+5A9YJQ
OaqM6cJ79DbjOJ0EUNuptz9LKtaKKlyHKut0NZhqnORSy5N40to5g/MM0WUeZpxA
VgYNWPxBZF4G2oPQOwZCcNo4U+BUNVPO3nlKv/U75VN/bBgSZ6neN31EZV5oCng5
PbsAIjUOo5TmlBUaPTnHUA6xZKUpo2lBQGmUsA0a6poSJ1DuHjoZtylwtG0enWE+
fQIDAQAB
-----END PUBLIC KEY-----
似乎还是不是很大,再次分解,然后试了 factordb 不行,试试 yafu。结果分解出来了。
P309 = 156956618844706820397012891168512561016172926274406409351605204875848894134762425857160007206769208250966468865321072899370821460169563046304363342283383730448855887559714662438206600780443071125634394511976108979417302078289773847706397371335621757603520669919857006339473738564640521800108990424511408496383
P309 = 156956618844706820397012891168512561016172926274406409351605204875848894134762425857160007206769208250966468865321072899370821460169563046304363342283383730448855887559714662438206600780443071125634394511976108979417302078289773847706397371335621757603520669919857006339473738564640521800108990424511408496259
可以发现这两个数非常相近,可能是 factordb 没有实现这类分解。
继而下面的操作类似于 level0。只是这次是直接解密就好,没啥填充,试了填充反而错
得到密码 fA35ORI11TLoN_Att1Ck_cL0sE_PrI8e_4acTorS
。继续下一步,查看公钥
➜ level2 git:(master) ✗ openssl rsa -pubin -in public.key -text -modulus
Public-Key: (1025 bit)
Modulus:
01:ba:0c:c2:45:b4:5c:e5:b5:f5:6c:d5:ca:a5:90:
c2:8d:12:3d:8a:6d:7f:b6:47:37:fb:7c:1f:5a:85:
8c:1e:35:13:8b:57:b2:21:4f:f4:b2:42:24:5f:33:
f7:2c:2c:0d:21:c2:4a:d4:c5:f5:09:94:c2:39:9d:
73:e5:04:a2:66:1d:9c:4b:99:d5:38:44:ab:13:d9:
cd:12:a4:d0:16:79:f0:ac:75:f9:a4:ea:a8:7c:32:
16:9a:17:d7:7d:80:fd:60:29:64:c7:ea:50:30:63:
76:59:c7:36:5e:98:d2:ea:5b:b3:3a:47:17:08:2d:
d5:24:7d:4f:a7:a1:f0:d5:73
Exponent:
01:00:8e:81:dd:a0:e3:19:28:e8:ee:51:11:08:c7:
50:5f:61:31:05:d2:e2:ff:9b:83:71:e4:29:c2:dd:
92:70:65:d4:09:6d:58:c3:76:31:07:f1:d4:fc:cf:
2d:b3:0a:6d:02:7c:56:61:7c:be:7e:0b:7e:d9:22:
28:66:9e:fb:3d:2f:2c:20:59:3c:21:ef:ff:31:00:
6a:fb:a7:68:de:4a:0a:4c:1a:a7:09:d5:48:98:c8:
1f:cf:fb:dd:f7:9c:ae:ae:0b:15:f4:b2:c7:e0:bc:
ba:31:4f:5e:07:83:ad:0e:7f:b9:82:a4:d2:01:fa:
68:29:6d:66:7c:cf:57:b9:4b
Modulus=1BA0CC245B45CE5B5F56CD5CAA590C28D123D8A6D7FB64737FB7C1F5A858C1E35138B57B2214FF4B242245F33F72C2C0D21C24AD4C5F50994C2399D73E504A2661D9C4B99D53844AB13D9CD12A4D01679F0AC75F9A4EAA87C32169A17D77D80FD602964C7EA5030637659C7365E98D2EA5BB33A4717082DD5247D4FA7A1F0D573
writing RSA key
-----BEGIN PUBLIC KEY-----
MIIBIDANBgkqhkiG9w0BAQEFAAOCAQ0AMIIBCAKBgQG6DMJFtFzltfVs1cqlkMKN
Ej2KbX+2Rzf7fB9ahYweNROLV7IhT/SyQiRfM/csLA0hwkrUxfUJlMI5nXPlBKJm
HZxLmdU4RKsT2c0SpNAWefCsdfmk6qh8MhaaF9d9gP1gKWTH6lAwY3ZZxzZemNLq
W7M6RxcILdUkfU+nofDVcwKBgQEAjoHdoOMZKOjuUREIx1BfYTEF0uL/m4Nx5CnC
3ZJwZdQJbVjDdjEH8dT8zy2zCm0CfFZhfL5+C37ZIihmnvs9LywgWTwh7/8xAGr7
p2jeSgpMGqcJ1UiYyB/P+933nK6uCxX0ssfgvLoxT14Hg60Of7mCpNIB+mgpbWZ8
z1e5Sw==
-----END PUBLIC KEY-----
发现私钥 e 和 n 几乎一样大,考虑 d 比较小,使用 Wiener's Attack。得到 d,当然也可以再次验证一遍。
➜ level2 git:(master) ✗ python RSAwienerHacker.py
Testing Wiener Attack
Hacked!
('hacked_d = ', 29897859398360008828023114464512538800655735360280670512160838259524245332403L)
-------------------------
Hacked!
('hacked_d = ', 29897859398360008828023114464512538800655735360280670512160838259524245332403L)
-------------------------
Hacked!
('hacked_d = ', 29897859398360008828023114464512538800655735360280670512160838259524245332403L)
-------------------------
Hacked!
('hacked_d = ', 29897859398360008828023114464512538800655735360280670512160838259524245332403L)
-------------------------
Hacked!
('hacked_d = ', 29897859398360008828023114464512538800655735360280670512160838259524245332403L)
-------------------------
这时我们解密密文,解密代码如下
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_v1_5, PKCS1_OAEP
import gmpy2
from base64 import b64decode
d = 29897859398360008828023114464512538800655735360280670512160838259524245332403L
with open('./public.key') as f:
key = RSA.importKey(f)
n = key.n
e = key.e
def getprivatekey(n, e, d):
priviatekey = RSA.construct((long(n), long(e), long(d)))
with open('private.pem', 'w') as f:
f.write(priviatekey.exportKey())
def decrypt():
with open('./level3.passwd.enc') as f:
cipher = f.read()
with open('./private.pem') as f:
key = RSA.importKey(f)
print key.decrypt(cipher)
getprivatekey(n, e, d)
decrypt()
利用末尾的字符串 wIe6ER1s_1TtA3k_e_t00_larg3
解密压缩包,注意去掉 B。至此全部解密结束,得到 flag。
2018 WCTF RSA¶
题目基本描述为
Description:
Encrypted message for user "admin":
<<<320881698662242726122152659576060496538921409976895582875089953705144841691963343665651276480485795667557825130432466455684921314043200553005547236066163215094843668681362420498455007509549517213285453773102481574390864574950259479765662844102553652977000035769295606566722752949297781646289262341623549414376262470908749643200171565760656987980763971637167709961003784180963669498213369651680678149962512216448400681654410536708661206594836597126012192813519797526082082969616915806299114666037943718435644796668877715954887614703727461595073689441920573791980162741306838415524808171520369350830683150672985523901>>>
admin public key:
n = 483901264006946269405283937218262944021205510033824140430120406965422208942781742610300462772237450489835092525764447026827915305166372385721345243437217652055280011968958645513779764522873874876168998429546523181404652757474147967518856439439314619402447703345139460317764743055227009595477949315591334102623664616616842043021518775210997349987012692811620258928276654394316710846752732008480088149395145019159397592415637014390713798032125010969597335893399022114906679996982147566245244212524824346645297637425927685406944205604775116409108280942928854694743108774892001745535921521172975113294131711065606768927
e = 65537
Service: http://36.110.234.253
这个题目现在已经没有办法在线获取 binary 了,现在得到的 binary 是之前已经下载好的,我们当时需要登录用户的 admin 来下载对应的 generator。
通过简单逆向这个 generator,我们可以发现这个程序是这么工作的
- 利用用户给定的 license(32 个字节),迭代解密某个固定位置之后的数据,每 32 个字节一组,与密钥相异或得到结果。
- 密钥的生成方法为
- k_1=key
- k_2 =sha256(k_1)
- ...
- k_n=sha256(k_{n-1})
其中,固定位置就是在找源文件 generator
中第二次出现 ENCRYPTED
的位置,然后再次偏移 32 个字节。
_ENCRYPT_STR = ENCRYPTED_STR;
v10 = 0;
ENCRYPTED_LEN = strlen(ENCRYPTED_STR);
do
{
do
++v9;
while ( strncmp(&file_contents[v9], _ENCRYPT_STR, ENCRYPTED_LEN) );
++v10;
}
while ( v10 <= 1 );
v11 = &file_start_off_32[loc2 + ENCRYPTED_LEN];
v12 = loc2 + ENCRYPTED_LEN;
len = file_size - (loc2 + ENCRYPTED_LEN) - 32;
decrypt(&file_start_off_32[v12], &license, len);
sha256_file_start(v11, len, &output);
if ( !memcmp(&output, &file_contents[v12], 0x20u) )
{
v14 = fopen("out.exe", "wb");
fwrite(v11, 1u, len, v14);
fclose(v14);
sprintf(byte_406020, "out.exe %s", argv[1]);
system(byte_406020);
}
同时,我们需要确保生成的文件的校验对应的哈希值恰好为指定的值,由于文件最后是一个 exe 文件,所以我们可以认为最后的文件头就是标准的 exe 文件,因此就不需要知道原始的 license 文件,进而我们可以编写 python 脚本生成 exe。
在生成的 exe 中,我们分析出程序的基本流程为
- 读取 license
- 使用 license 作为 seed 分别生成 pq
- 利用 p,q 生成 n,e,d。
其漏洞出现在生成 p,q 的方法上,而且生成 p 和 q 的方法类似。
我们如果仔细分析下生成素数的函数的话,可以看到每个素数都是分为两部分生成的
- 生成左半部分 512 位。
- 生成右半部分 512 位。
- 左右构成 1024 比特位,判断是不是素数,是素数就成功,不是素数,继续生成。
其中生成每部分的方式相同,方式为
sha512(const1|const2|const3|const4|const5|const6|const7|const8|v9)
v9=r%1000000007
只有 v9 会有所变化,但是它的范围却是固定的。
那么,如果我们表示 p,q 为
p=a*2^{512}+b
q=c*2^{512}+d
那么
n=pq=ac*2^{1024}+(ad+bc)*2^{512}+bd
那么
n \equiv bd \bmod 2^{512}
而且由于 p 和 q 在生成时,a,b,c,d 均只有 1000000007 种可能性。
进而,我们可以枚举所有的可能性,首先计算出 b 可能的集合为 S,同时我们使用中间相遇攻击,计算
n/d \equiv b \bmod 2^{512}
这里由于 b 和 d 都是 p 的尾数,所以一定不会是 2 的倍数,进而必然存在逆元。
这样做虽然可以,然而,我们可以简单算一下存储空间
64*1000000007 / 1024 / 1024 / 1024=59
也就是说需要 59 G,太大了,,所以我们仍然需要进一步考虑
n \equiv bd \bmod 2^{64}
这样,我们的内存需求瞬间就降到了 8 G左右。我们仍然使用枚举的方法进行运算。
其次,我们不能使用 python,,python 占据空间太大,因此需要使用 c/c++ 编写。
枚举所有可能的 d 计算对应的值 n/d 如果对应的值在集合 S 中,那么我们就可以认为找到了一对合法的 b 和 d,因此我们就可以恢复 p 和 q 的一半。
之后,我们根据
n-bd=ac*2^{1024}+(ad+bc)*2^{512}
可以得到
\frac{n-bd}{2^{512}} = ac*2^{512}+ad+bc
\frac{n-bd}{2^{512}} \equiv ad+bc \bmod 2^{512}
类似地,我们可以计算出 a 和 c,从而我们就可以完全恢复出 p 和 q。
在具体求解的过程中,在求 p 和 q 的一部分时,可以发现因为是模 2^{64},所以可能存在碰撞(但其实就是一个是 p,另外一个是q,恰好对称。)。下面我们就求得了 b 对应的 v9。
注意:这里枚举出来的空间大约占用 11 个 G(包括索引),所以请选择合适的位置。
b64: 9646799660ae61bd idx_b: 683101175 idx_d: 380087137
search 23000000
search 32000000
search 2b000000
search d000000
search 3a000000
search 1c000000
search 6000000
search 24000000
search 15000000
search 33000000
search 2c000000
search e000000
b64: 9c63259ccab14e0b idx_b: 380087137 idx_d: 683101175
search 1d000000
search 3b000000
search 7000000
search 16000000
search 25000000
search 34000000
其实,我们在真正得到 p 或者 q 的一部分后,另外一部分完全可以使用暴力枚举的方式获取,因为计算量几乎都是一样的,最后结果为
...
hash 7000000
hash 30000000
p = 13941980378318401138358022650359689981503197475898780162570451627011086685747898792021456273309867273596062609692135266568225130792940286468658349600244497842007796641075219414527752166184775338649475717002974228067471300475039847366710107240340943353277059789603253261584927112814333110145596444757506023869
q = 34708215825599344705664824520726905882404144201254119866196373178307364907059866991771344831208091628520160602680905288551154065449544826571548266737597974653701384486239432802606526550681745553825993460110874794829496264513592474794632852329487009767217491691507153684439085094523697171206345793871065206283
plain text 13040004482825754828623640066604760502140535607603761856185408344834209443955563791062741885
hash 16000000
hash 25000000
hash b000000
hash 34000000
hash 1a000000
...
➜ 2018-WCTF-rsa git:(master) ✗ python
Python 2.7.14 (default, Mar 22 2018, 14:43:05)
[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> p=13040004482825754828623640066604760502140535607603761856185408344834209443955563791062741885
>>> hex(p)[2:].decode('hex')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/Cellar/python@2/2.7.14_3/Frameworks/Python.framework/Versions/2.7/lib/python2.7/encodings/hex_codec.py", line 42, in hex_decode
output = binascii.a2b_hex(input)
TypeError: Odd-length string
>>> hex(p)[2:-1].decode('hex')
'flag{fa6778724ed740396fc001b198f30313}'
最后我们便拿到 flag 了。
详细的利用代码请参见 ctf-challenge 仓库。
相关编译指令,需要链接相关的库。
g++ exp2.cpp -std=c++11 -o main2 -lgmp -lcrypto -pthread