RSA 数字签名¶
原理¶
原理类似于 RSA 加密,只是这里使用私钥进行加密,将加密后的结果作为签名。
2018 Backdoor Awesome mix1¶
首先,可以简单分析源码,这里程序使用 PKCS1_V1.5 进行了 RSA 签名,这会对明文消息进行扩展,具体扩展规则请参考 https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf 。这里给出对应扩展脚本,对应于题目中的 from Util import PKCS1_pad as pad
def PKCS1_pad(data):
asn1 = "3021300906052b0e03021a05000414"
ans = asn1 + data
n = len(ans)
return int(('00' + '01' + 'ff' * (1024 / 8 - n / 2 - 3) + '00' + ans), 16)
程序希望我们给出 n,e
使得程序满足
h(m)^e mod \ n=pad(m)
这里我们已经知道 h(m),pad(m)
。显然如果我们控制 e=1
的话,那么
h(m)-pad(m)=kn
那么如果我们可以设置 k=1,既可以得到 n。
本地部署 socat TCP4-LISTEN:12345,fork EXEC:./mix1.py
。
exp 如下
from Crypto.Hash import SHA
from pwn import *
from Util import PKCS1_pad
#context.log_level = 'debug'
def main():
port = 12345
host = "127.0.0.1"
p = remote(host, port)
p.recvuntil('Message -> ')
message = p.recvuntil('\n\nSignature -> ', drop=True)
log.info('message: ' + message)
signature = p.recvuntil('\n', drop=True)
log.info('signature: ' + signature)
h = SHA.new(message)
m = PKCS1_pad(h.hexdigest())
e = 1
n = int(signature, 16) - m
p.sendlineafter('Enter n:', str(n))
p.sendlineafter('Enter e:', str(e))
p.interactive()
main()
效果如下
➜ 2018-BackdoorCTF-Awesome-mix1 git:(master) python exp.py
[+] Opening connection to 127.0.0.1 on port 12345: Done
[*] message: super important information for admin only
[*] signature: 721af5bd401b5f2aff8e86bf811b827cdb5877ef12202f24fa914a26f235523f80c45fdbf0d3c9fa77278828ddd8ca0551a941bd57c97dd38654692568d1357a49e7a2a284d296508602ead24c91e5aa7f517b9e48422575f0dd373d00f267a206ba164ab104c488268b5f95daf490a048407773d4b1016de8ef508bf1aa678f
[*] Switching to interactive mode
CTF{cryp70_5ur3_15_w13rd}
[*] Got EOF while reading in interactive
2018 Backdoor Awesome mix2¶
本地部署 socat TCP4-LISTEN:12345,fork EXEC:./service.py
。
题目类似于上面的题目,唯一的区别在于对于 e 有约束,必须大于 3,所以我们不能使用 1 了。
h(m)^e mod \ n=pad(m)
这里我们已经知道 h(m),pad(m)
。我们只需要构造剩下的数即可,这里我们构造 n 为素数,使得 n-1是一个光滑数,这样就可以使用 pohlig_hellman 算法了。
from Crypto.Hash import SHA
from pwn import *
import gmpy2
from gmpy2 import is_prime
import random
def PKCS1_pad(data):
asn1 = "3021300906052b0e03021a05000414"
ans = asn1 + data
n = len(ans)
return int(('00' + '01' + 'ff' * (1024 / 8 - n / 2 - 3) + '00' + ans), 16)
#context.log_level = 'debug'
def gen_smooth_num(plist, minnum=pow(2, 1020)):
lenp = len(plist)
while True:
n = 1
factors = dict()
while n + 1 < minnum:
tmp = random.randint(0, lenp - 1)
n *= plist[tmp]
if plist[tmp] in factors:
factors[plist[tmp]] += 1
else:
factors[plist[tmp]] = 1
if n.bit_length() > 1024:
continue
if is_prime(n + 1):
return n + 1, factors
# http://pythonexample.com/snippet/pohligpy_neuratron_python
# solve g^x=h mod m
def log_prime_power(g, h, pf, pe, M):
powers = [pf**k for k in range(pe)]
gamma = gmpy2.powmod(g, powers[-1], M)
xk = gmpy2.mpz(0)
for k in range(pe):
if k == 0:
hk = gmpy2.powmod(h, powers[pe - k - 1], M)
else:
gk = gmpy2.powmod(g, xk * (M - 2), M)
hk = gmpy2.powmod(gk * h, powers[pe - k - 1], M)
k_log_found = False
for dk in range(pf):
yk = gmpy2.powmod(gamma, dk, M)
if yk == hk:
k_log_found = True
break
if not k_log_found:
raise Exception("can not solve")
xk += gmpy2.mul(powers[k], dk)
return xk
def pohlig_hellman(g, h, M, factors):
M1 = M - 1
xs = []
for f in factors:
pf = f
pe = factors[f]
subgroup_exponent = gmpy2.div(M1, gmpy2.powmod(pf, pe, M))
gi = gmpy2.powmod(g, subgroup_exponent, M)
hi = gmpy2.powmod(h, subgroup_exponent, M)
xi = log_prime_power(gi, hi, pf, pe, M)
xs.append(xi)
crt_coeffs = []
for f in factors:
pf = f
pe = factors[f]
mi = pf**pe
bi = gmpy2.div(M, mi)
bi_inv = gmpy2.invert(bi, mi)
crt_coeffs.append(gmpy2.mul(bi, bi_inv))
x = 0
for i in range(len(crt_coeffs)):
x = gmpy2.t_mod(x + gmpy2.t_mod(xs[i] * crt_coeffs[i], M1), M1)
return x
#context.log_level = 'debug'
def main():
port = 12345
host = "127.0.0.1"
p = remote(host, port)
p.recvuntil('Message -> ')
message = p.recvuntil('\n\nSignature -> ', drop=True)
log.info('message: ' + message)
signature = p.recvuntil('\n', drop=True)
log.info('signature: ' + signature)
signature = int(signature, 16)
h = SHA.new(message)
m = PKCS1_pad(h.hexdigest())
print m, signature
plist = []
for i in range(2, 1000):
if is_prime(i):
plist.append(i)
while True:
try:
n, factors = gen_smooth_num(plist, signature)
e = pohlig_hellman(signature, m, n, factors)
except Exception as e:
continue
else:
break
print n, e
print m
print gmpy2.powmod(signature, e, n)
p.sendlineafter('Enter n:', str(n))
p.sendlineafter('Enter e:', str(e))
p.interactive()
main()
有两点需要注意
- 由于 g^x=y 中的 g 和 y 都是给定的,我们新找到的 n,不一定 g 的幂次构成的群会包含 y,所以可能求解失败,所以需要多次求解。
- 源代码中虽然
n.bit_length() <= 1025
,但是其实 n 在满足不小于 signature 的条件时,必须满足如下条件(pycrypto 源码)
modBits = Crypto.Util.number.size(self._key.n)
k = ceil_div(modBits,8) # Convert from bits to bytes
# Step 1
if len(S) != k:
return 0
所以我们最好设置 n 为1024 比特位。