扩展维纳攻击¶
扩展维纳攻击
来自《Extending Wiener's Attack in the Presence of Many Decrypting Exponents》
,相关题目在CTF中已经出现了,例如2020羊城杯的Simple,但都是一些模板题,这里将详细分析原论文中提出的方法以及分析方式,写明扩展维纳攻击原理以及在文末给出了一些开放问题欢迎讨论。
原理分析¶
维纳(Wiener)的方法¶
-
维纳
Wiener
提出了一种关于私钥过小时对N进行分解的一种方式。并给出了证明当d < \frac{1}{3}N^{\frac{1}{4}}满足时(还应满足q < p < 2q,因这里及后文主要是对私钥进行探讨,故忽略这类条件)一定能够分解N。
-
以下为原论文中对于
Wiener's Approach
的部分描述,部分内容有删减,其实这里也就是维纳攻击的证明,所以要想更详细了解请再看维纳攻击的原理,这里我们主要后面要用到这里的式1
。方法如下已知
e*d -k*\lambda(N) = 1这里\lambda(N) = lcm(p-1, q-1) = \varphi(N) / g,令s = 1-p-q则有
edg - kN = g + ks\tag{1}将两边同时除以dgN则有
\frac{e}{N} - \frac{k}{dg} = \frac{g+ks}{dgN} = (\frac{k}{dg})(\frac{s}{N}) + \frac{1}{dN}我们知道这里有e \approx N, s \approx N^{1/2},所以有k/(dg)\approx 1。则我们可以知道等式右边约等于N^{-1/2}。我们都知道当
|x - a/b| < 1/(2b^2)时则a/b是一个x连分数近似(
连分数定理Continued Fractions
)所以当
d < \frac{\sqrt{2}}{2g}N^{\frac{1}{4}}时有k/dg是e/N的连分数近似,即能通过连分数展开覆盖。
-
注意这里前面所说的范围和后面的范围并不矛盾
这里对一些参数的值的近似并不严格,所以和维纳攻击的严格范围有出入,具体细节可参考维纳攻击的证明。
郭(Guo)的方法¶
-
郭针对不止一个e的情况进行研究,但是郭只研究了两个以及三个e的情况,上上节一样,这里我们还是使用原文内容翻译+解释的写法。对于两个e的情况,我们可以考虑
e_1d_1g - k_1(p-1)(q-1) = g\\ e_2d_2g - k_2(p-1)(q-1) = g简单化简可以得到下式子
k_2d_1e_1 - k_1d_2e_2 = k_2 - k_1\tag{2}两边同时除以k_2d_1e_2
\frac{e_1}{e_2} - \frac{k_1d_2}{k_2d_1} = \frac{k_2 - k_1}{k_2d_1e_2}设d_i < N^\alpha,则等式右边约等于N^{-(1+\alpha)}
则当
2(k_2d_1)^2 < N^{1+\alpha}时k_1d_2/(k_2d_1)是e_1/e_2的连分数近似。当k_2和d_1最多为N^\alpha而且g很小时,得到
\alpha < 1/3 - \epsilon\ \ \ (\epsilon > 0) -
然而即使我们得到了(k_1d_2)/(k_2d_1)还是无法分解N,原文后面还讨论了郭的提议,尝试对k_1d_2进行分解,这里不再讲解。
扩展维纳攻击¶
-
上述部分内容截至目前(2021/10)网络上已经有很多博文进行了讲解了分析,但是对于具体扩展维纳攻击的原理以及格构造或者是更高维的推广都没有给出。这里我将详细的对原论文内容进行翻译以及讲解。
-
为了将分析扩展到n个加密指数e_i(解密指数d_i很小),我们同时使用维纳和郭的方法,我们将关系
d_ige_i - k_iN = g + k_is记为维纳等式W_i,同样我们可以得到关系
k_id_je_j - k_jd_ie_i = k_i - k_j记为郭等式G_{i,j}。
我们假设d_i和k_i都小于N^{\alpha_n},且g很小,s \approx N^{1/2}。可以注意到W_i和G_i的右侧非常小,实际上分别最多为N^{1/2 + \alpha}和N^\alpha。
最后,我们考虑复合关系式比如W_uG_{v,w},显然大小为N^{1/2 + 2\alpha}。
-
原文中这里是定义了两个关系式以及指出了他们的大小范围,这个范围很重要也容容易分析处理,之后我们所做的其实就是使用这两个式子的不同复合关系去构造一个格,然后通过求其基向量得到d_1g/k_1,从而可以算得\varphi(N)并可以进一步的对N进行分解。
-
其实到这里原理分析已经结束,关于格的构造其实也并不复杂,但是核心是这里的复合关系的选取,以及对于最后\alpha大小的分析。
两个小解密指数的情况¶
-
我们选取关系W_1, G_{1,2},W_1W_2,这样便有
\begin{aligned} d_1ge_1 - k_1N &= g+k_1s\\ k_1d_2e_2 - k_2d_1e_1 &= k_1-k_2\\ d_1d_2g^2e_1e_2 - d_1gk_2e_1N - d_2gk_1e_2N + k_1k_2N^2 &= (g+k_1s)(g+k_2s) \end{aligned}我们对第一个关系式乘上k_2,这样左边便全是由d_1d_2g^2, d_1gk_2, d_2gk_1和k_1k_2构成,这样我们便可以用已知内容构造格将上述式子转化为矩阵运算
\begin{pmatrix} k_1k_2&d_1gk_2&d_2gk_1&d_1d_2g^2 \end{pmatrix} \begin{pmatrix} 1&-N&0&N^2\\ &e_1&-e_1&-e_1N\\ &&e_2&-e_2N\\ &&&e_1e_2 \end{pmatrix} = \begin{pmatrix} k_1k_2&k_2(g+k_1s)&g(k_1 - k_2)&(g+k_1s)(g+k_2s) \end{pmatrix}等式右边向量的大小为N^{2\alpha_2}, N^{1/2+2\alpha_2}, N^{\alpha_2}, N^{1+2\alpha_2},为了让大小相等,我们可以考虑构造一个D矩阵。
D = \begin{pmatrix} N&&&\\ &N^{1/2}&&\\ &&N^{1+\alpha_2}&\\ &&&1 \end{pmatrix}最终我们构造的矩阵为
L_2 = \begin{pmatrix} 1&-N&0&N^2\\ &e_1&-e_1&-e_1N\\ &&e_2&-e_2N\\ &&&e_1e_2 \end{pmatrix} * D这样向量b = \begin{pmatrix} k_1k_2&d_1gk_2&d_2gk_1&d_1d_2g^2 \end{pmatrix}便有
\Vert bL_2 \Vert < 2N^{1+2\alpha_2}这也就是为什么前面需要构造D矩阵的原因,给定D矩阵后,我们可以得到一个上界,这样问题可以转化为类SVP问题。
那么这里的b向量其实我们使用格基规约算法例如
LLL
便可以得到基向量b,然后我们求解b_2/b_1即得到d_1g/k_1之后我们就可以得到
\varphi(N) = \frac{edg}{k} - \frac{g}{k} = \lfloor edg/k\rceil我们假设这些格中最短向量长度为\Delta^{1/4-\epsilon},其中\Delta = det(L_2) = N^{13/2 + \alpha_2}。如果这些格是随机的,我们甚至几乎可以肯定没有格点比闵可夫斯基界(Minkowski's bound)2\Delta^{1/4},所以bL_2是最短向量当
N^{1+2\alpha_2} < (1/c_2)\left(N^{13/2+\alpha_2}\right)^{1/4}对于一些小的c_2,如果有
\alpha_2 < 5/14 - \epsilon^{'}则我们可以通过格基规约找到向量b。
-
上述内容是原文中给出的当两个小解密指数是进行的攻击细节,并且分析了\alpha的大小关系。
三个小解密指数的情况¶
-
对于三个指数的情况我们额外选取G_{1, 3}, W_1G_{2, 3}, W_2G_{1,3}
这样我们的向量b为
B = \begin{pmatrix} k_1k_2k_3&d_1gk_2k_3&k_1d_2gk_3&d_1d_2g^2k_3&k_1k_2d_3g&k_1d_3g&k_2d_3g&d_1d_2d_3g^3 \end{pmatrix}然后我们便可以构造格
L_3 = \left(\begin{array}{rrrrrrrr} 1 & -N & 0 & N^{2} & 0 & 0 & 0 & -N^{3} \\ 0 & e_{1} & -e_{1} & -N e_{1} & -e_{1} & 0 & N e_{1} & N^{2} e_{1} \\ 0 & 0 & e_{2} & -N e_{2} & 0 & N e_{2} & 0 & N^{2} e_{2} \\ 0 & 0 & 0 & e_{1} e_{2} & 0 & -e_{1} e_{2} & -e_{1} e_{2} & -N e_{1} e_{2} \\ 0 & 0 & 0 & 0 & e_{3} & -N e_{3} & -N e_{3} & N^{2} e_{3} \\ 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} & 0 & -N e_{1} e_{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} & -N e_{2} e_{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} \end{array}\right)其中
D = diag(\begin{array}{r} N^{\frac{3}{2}}&N&N^{a + \frac{3}{2}}&\sqrt{N}&N^{a + \frac{3}{2}}&N^{a + 1}&N^{a + 1}&1\end{array})同样我们可以得到
\Vert bL_2 \Vert < \sqrt{8}N^{3/2+2\alpha_3}则当
\alpha_3 < 2/5 - \epsilon^{'}时可以通过格基规约求出向量b。
四个小解密指数的情况¶
- 额外选取G_{1, 4}, W_1G_{2, 4}, G_{1, 2}G_{3,4}, G_{1, 3}G_{2, 4}, W_1W_2G_{3, 4}, W_1W_3G_{2, 4}, W_2W_3G_{1, 4}, W_1W_2W_3W_4进行构造。不再翻译。
分析¶
-
扩展维纳攻击结合上述三个例子已经详细的阐明了方法细节,但是其中没有讲解如何选取复合关系。其实在原文的附录中给出了复合关系的选取,以及给出了\alpha_n的表达式。
-
在原文附录部分,考虑n个指数e_i,这样则有2^n个不同的量h_j(一个表达式e_i的个数),这样我们的L_n在乘上D之前,矩阵L_n的行列式为N^{n2^{n-1}}
这样最后一个关系W_1W_2\dots W_n最大为N^{n/2 + n\alpha_n},这样我们便知道了任意情况的最大界值,我们只需要让其他值增加到这么多即可(即构造D矩阵)
引入了新的关系式
R_{u,v} = W_{i_1}\dots W_{i_u}G_{j_1, l_1}\dots G_{j_v, l_v}其中i_1,\dots,i_u,j_1,\dots,j_u,l_1,\dots,l_v都不同,那么这里最多会有u + 2v个指数e_i,则我们的关系R_{u,v}最多为N^{u/2 + (u+v)\alpha_n},同时注意我要需要所有系数的大小大致相同,所以我们在某些等式乘上k_i,使得关系R_{u, v} = N^{u/2 + (n-v)\alpha_n}。
最后我们再计算所有的大小与最大大小N^{n/2 + n\alpha_n}的差值,构造矩阵D。
这样我们便完成了矩阵D的构造,同时设矩阵D里面指数的乘积为\beta_n = x+y\alpha_n,这样有
det(L_n) \approx N^{n2^{n-1} + x + y\alpha_n}则有
N^{n/2 + n\alpha_n} < (1/c_n)\left(N^{n2^{n-1} + x + y\alpha_n}\right)^{1/2^n}对于小c_n,有
\alpha_n < \frac{x}{n2^n - y} - \epsilon^{'}所以我们要想让\alpha_n更大就需要让x和y更大,这意味着我们要选取更多的v和更小的u。比如在n=2的情况我们选取W_1, G_{1, 2}, W_1W_2而不是W_1, W_2, W_1W_2因为前者\beta_2 = 5/2 + \alpha而后者\beta_2 = 2。
-
到这里,其实已经讲清楚了扩展维纳攻击的整个流程,如何选择复合关系,如何构造格,如何构造矩阵D以及如何求解。在原文的文末也给出了n\le 5时候的选择关系表。
这里我也给出n\le8的选择关系以及n=6时候构造的矩阵以供验证自己是否能够编写出选择关系式的逻辑代码。
- W(1) G(1, 2) W(1)W(2) G(1, 3) W(1)G(2, 3) W(2)G(1, 3) W(1)W(2)W(3) G(1, 4) W(1)G(2, 4) G(1, 2)G(3, 4) G(1, 3)G(2, 4) W(1)W(2)G(3, 4) W(1)W(3)G(2, 4) W(2)W(3)G(1, 4) W(1)W(2)W(3)W(4) G(1, 5) W(1)G(2, 5) G(1, 2)G(3, 5) G(1, 3)G(2, 5) G(1, 4)G(2, 5) W(1)W(2)G(3, 5) W(1)G(2, 3)G(4, 5) W(1)G(2, 4)G(3, 5) W(2)G(1, 3)G(4, 5) W(2)G(1, 4)G(3, 5) W(3)G(1, 4)G(2, 5) W(1)W(2)W(3)G(4, 5) W(1)W(2)W(4)G(3, 5) W(1)W(3)W(4)G(2, 5) W(2)W(3)W(4)G(1, 5) W(1)W(2)W(3)W(4)W(5) G(1, 6) W(1)G(2, 6) G(1, 2)G(3, 6) G(1, 3)G(2, 6) G(1, 4)G(2, 6) G(1, 5)G(2, 6) W(1)W(2)G(3, 6) W(1)G(2, 3)G(4, 6) W(1)G(2, 4)G(3, 6) W(1)G(2, 5)G(3, 6) G(1, 2)W(3)G(4, 6) G(1, 2)G(3, 4)G(5, 6) G(1, 2)G(3, 5)G(4, 6) G(1, 3)G(2, 4)G(5, 6) G(1, 3)G(2, 5)G(4, 6) G(1, 4)G(2, 5)G(3, 6) W(1)W(2)W(3)G(4, 6) W(1)W(2)G(3, 4)G(5, 6) W(1)W(2)G(3, 5)G(4, 6) W(1)W(3)G(2, 4)G(5, 6) W(1)W(3)G(2, 5)G(4, 6) W(1)W(4)G(2, 5)G(3, 6) W(2)W(3)G(1, 4)G(5, 6) W(2)W(3)G(1, 5)G(4, 6) W(2)W(4)G(1, 5)G(3, 6) W(3)W(4)G(1, 5)G(2, 6) W(1)W(2)W(3)W(4)G(5, 6) W(1)W(2)W(3)W(5)G(4, 6) W(1)W(2)W(4)W(5)G(3, 6) W(1)W(3)W(4)W(5)G(2, 6) W(2)W(3)W(4)W(5)G(1, 6) W(1)W(2)W(3)W(4)W(5)W(6) G(1, 7) W(1)G(2, 7) G(1, 2)G(3, 7) G(1, 3)G(2, 7) G(1, 4)G(2, 7) G(1, 5)G(2, 7) G(1, 6)G(2, 7) W(1)W(2)G(3, 7) W(1)G(2, 3)G(4, 7) W(1)G(2, 4)G(3, 7) W(1)G(2, 5)G(3, 7) W(1)G(2, 6)G(3, 7) G(1, 2)W(3)G(4, 7) G(1, 2)G(3, 4)G(5, 7) G(1, 2)G(3, 5)G(4, 7) G(1, 2)G(3, 6)G(4, 7) G(1, 3)G(2, 4)G(5, 7) G(1, 3)G(2, 5)G(4, 7) G(1, 3)G(2, 6)G(4, 7) G(1, 4)G(2, 5)G(3, 7) G(1, 4)G(2, 6)G(3, 7) G(1, 5)G(2, 6)G(3, 7) W(1)W(2)W(3)G(4, 7) W(1)W(2)G(3, 4)G(5, 7) W(1)W(2)G(3, 5)G(4, 7) W(1)W(2)G(3, 6)G(4, 7) W(1)G(2, 3)W(4)G(5, 7) W(1)G(2, 3)G(4, 5)G(6, 7) W(1)G(2, 3)G(4, 6)G(5, 7) W(1)G(2, 4)G(3, 5)G(6, 7) W(1)G(2, 4)G(3, 6)G(5, 7) W(1)G(2, 5)G(3, 6)G(4, 7) W(2)G(1, 3)W(4)G(5, 7) W(2)G(1, 3)G(4, 5)G(6, 7) W(2)G(1, 3)G(4, 6)G(5, 7) W(2)G(1, 4)G(3, 5)G(6, 7) W(2)G(1, 4)G(3, 6)G(5, 7) W(2)G(1, 5)G(3, 6)G(4, 7) W(3)G(1, 4)G(2, 5)G(6, 7) W(3)G(1, 4)G(2, 6)G(5, 7) W(3)G(1, 5)G(2, 6)G(4, 7) W(4)G(1, 5)G(2, 6)G(3, 7) W(1)W(2)W(3)W(4)G(5, 7) W(1)W(2)W(3)G(4, 5)G(6, 7) W(1)W(2)W(3)G(4, 6)G(5, 7) W(1)W(2)W(4)G(3, 5)G(6, 7) W(1)W(2)W(4)G(3, 6)G(5, 7) W(1)W(2)W(5)G(3, 6)G(4, 7) W(1)W(3)W(4)G(2, 5)G(6, 7) W(1)W(3)W(4)G(2, 6)G(5, 7) W(1)W(3)W(5)G(2, 6)G(4, 7) W(1)W(4)W(5)G(2, 6)G(3, 7) W(2)W(3)W(4)G(1, 5)G(6, 7) W(2)W(3)W(4)G(1, 6)G(5, 7) W(2)W(3)W(5)G(1, 6)G(4, 7) W(2)W(4)W(5)G(1, 6)G(3, 7) W(3)W(4)W(5)G(1, 6)G(2, 7) W(1)W(2)W(3)W(4)W(5)G(6, 7) W(1)W(2)W(3)W(4)W(6)G(5, 7) W(1)W(2)W(3)W(5)W(6)G(4, 7) W(1)W(2)W(4)W(5)W(6)G(3, 7) W(1)W(3)W(4)W(5)W(6)G(2, 7) W(2)W(3)W(4)W(5)W(6)G(1, 7) W(1)W(2)W(3)W(4)W(5)W(6)W(7) G(1, 8) W(1)G(2, 8) G(1, 2)G(3, 8) G(1, 3)G(2, 8) G(1, 4)G(2, 8) G(1, 5)G(2, 8) G(1, 6)G(2, 8) G(1, 7)G(2, 8) W(1)W(2)G(3, 8) W(1)G(2, 3)G(4, 8) W(1)G(2, 4)G(3, 8) W(1)G(2, 5)G(3, 8) W(1)G(2, 6)G(3, 8) W(1)G(2, 7)G(3, 8) G(1, 2)W(3)G(4, 8) G(1, 2)G(3, 4)G(5, 8) G(1, 2)G(3, 5)G(4, 8) G(1, 2)G(3, 6)G(4, 8) G(1, 2)G(3, 7)G(4, 8) G(1, 3)G(2, 4)G(5, 8) G(1, 3)G(2, 5)G(4, 8) G(1, 3)G(2, 6)G(4, 8) G(1, 3)G(2, 7)G(4, 8) G(1, 4)G(2, 5)G(3, 8) G(1, 4)G(2, 6)G(3, 8) G(1, 4)G(2, 7)G(3, 8) G(1, 5)G(2, 6)G(3, 8) G(1, 5)G(2, 7)G(3, 8) G(1, 6)G(2, 7)G(3, 8) W(1)W(2)W(3)G(4, 8) W(1)W(2)G(3, 4)G(5, 8) W(1)W(2)G(3, 5)G(4, 8) W(1)W(2)G(3, 6)G(4, 8) W(1)W(2)G(3, 7)G(4, 8) W(1)G(2, 3)W(4)G(5, 8) W(1)G(2, 3)G(4, 5)G(6, 8) W(1)G(2, 3)G(4, 6)G(5, 8) W(1)G(2, 3)G(4, 7)G(5, 8) W(1)G(2, 4)G(3, 5)G(6, 8) W(1)G(2, 4)G(3, 6)G(5, 8) W(1)G(2, 4)G(3, 7)G(5, 8) W(1)G(2, 5)G(3, 6)G(4, 8) W(1)G(2, 5)G(3, 7)G(4, 8) W(1)G(2, 6)G(3, 7)G(4, 8) G(1, 2)W(3)W(4)G(5, 8) G(1, 2)W(3)G(4, 5)G(6, 8) G(1, 2)W(3)G(4, 6)G(5, 8) G(1, 2)W(3)G(4, 7)G(5, 8) G(1, 2)G(3, 4)W(5)G(6, 8) G(1, 2)G(3, 4)G(5, 6)G(7, 8) G(1, 2)G(3, 4)G(5, 7)G(6, 8) G(1, 2)G(3, 5)G(4, 6)G(7, 8) G(1, 2)G(3, 5)G(4, 7)G(6, 8) G(1, 2)G(3, 6)G(4, 7)G(5, 8) G(1, 3)G(2, 4)W(5)G(6, 8) G(1, 3)G(2, 4)G(5, 6)G(7, 8) G(1, 3)G(2, 4)G(5, 7)G(6, 8) G(1, 3)G(2, 5)G(4, 6)G(7, 8) G(1, 3)G(2, 5)G(4, 7)G(6, 8) G(1, 3)G(2, 6)G(4, 7)G(5, 8) G(1, 4)G(2, 5)G(3, 6)G(7, 8) G(1, 4)G(2, 5)G(3, 7)G(6, 8) G(1, 4)G(2, 6)G(3, 7)G(5, 8) G(1, 5)G(2, 6)G(3, 7)G(4, 8) W(1)W(2)W(3)W(4)G(5, 8) W(1)W(2)W(3)G(4, 5)G(6, 8) W(1)W(2)W(3)G(4, 6)G(5, 8) W(1)W(2)W(3)G(4, 7)G(5, 8) W(1)W(2)G(3, 4)W(5)G(6, 8) W(1)W(2)G(3, 4)G(5, 6)G(7, 8) W(1)W(2)G(3, 4)G(5, 7)G(6, 8) W(1)W(2)G(3, 5)G(4, 6)G(7, 8) W(1)W(2)G(3, 5)G(4, 7)G(6, 8) W(1)W(2)G(3, 6)G(4, 7)G(5, 8) W(1)W(3)G(2, 4)W(5)G(6, 8) W(1)W(3)G(2, 4)G(5, 6)G(7, 8) W(1)W(3)G(2, 4)G(5, 7)G(6, 8) W(1)W(3)G(2, 5)G(4, 6)G(7, 8) W(1)W(3)G(2, 5)G(4, 7)G(6, 8) W(1)W(3)G(2, 6)G(4, 7)G(5, 8) W(1)W(4)G(2, 5)G(3, 6)G(7, 8) W(1)W(4)G(2, 5)G(3, 7)G(6, 8) W(1)W(4)G(2, 6)G(3, 7)G(5, 8) W(1)W(5)G(2, 6)G(3, 7)G(4, 8) W(2)W(3)G(1, 4)W(5)G(6, 8) W(2)W(3)G(1, 4)G(5, 6)G(7, 8) W(2)W(3)G(1, 4)G(5, 7)G(6, 8) W(2)W(3)G(1, 5)G(4, 6)G(7, 8) W(2)W(3)G(1, 5)G(4, 7)G(6, 8) W(2)W(3)G(1, 6)G(4, 7)G(5, 8) W(2)W(4)G(1, 5)G(3, 6)G(7, 8) W(2)W(4)G(1, 5)G(3, 7)G(6, 8) W(2)W(4)G(1, 6)G(3, 7)G(5, 8) W(2)W(5)G(1, 6)G(3, 7)G(4, 8) W(3)W(4)G(1, 5)G(2, 6)G(7, 8) W(3)W(4)G(1, 5)G(2, 7)G(6, 8) W(3)W(4)G(1, 6)G(2, 7)G(5, 8) W(3)W(5)G(1, 6)G(2, 7)G(4, 8) W(4)W(5)G(1, 6)G(2, 7)G(3, 8) W(1)W(2)W(3)W(4)W(5)G(6, 8) W(1)W(2)W(3)W(4)G(5, 6)G(7, 8) W(1)W(2)W(3)W(4)G(5, 7)G(6, 8) W(1)W(2)W(3)W(5)G(4, 6)G(7, 8) W(1)W(2)W(3)W(5)G(4, 7)G(6, 8) W(1)W(2)W(3)W(6)G(4, 7)G(5, 8) W(1)W(2)W(4)W(5)G(3, 6)G(7, 8) W(1)W(2)W(4)W(5)G(3, 7)G(6, 8) W(1)W(2)W(4)W(6)G(3, 7)G(5, 8) W(1)W(2)W(5)W(6)G(3, 7)G(4, 8) W(1)W(3)W(4)W(5)G(2, 6)G(7, 8) W(1)W(3)W(4)W(5)G(2, 7)G(6, 8) W(1)W(3)W(4)W(6)G(2, 7)G(5, 8) W(1)W(3)W(5)W(6)G(2, 7)G(4, 8) W(1)W(4)W(5)W(6)G(2, 7)G(3, 8) W(2)W(3)W(4)W(5)G(1, 6)G(7, 8) W(2)W(3)W(4)W(5)G(1, 7)G(6, 8) W(2)W(3)W(4)W(6)G(1, 7)G(5, 8) W(2)W(3)W(5)W(6)G(1, 7)G(4, 8) W(2)W(4)W(5)W(6)G(1, 7)G(3, 8) W(3)W(4)W(5)W(6)G(1, 7)G(2, 8) W(1)W(2)W(3)W(4)W(5)W(6)G(7, 8) W(1)W(2)W(3)W(4)W(5)W(7)G(6, 8) W(1)W(2)W(3)W(4)W(6)W(7)G(5, 8) W(1)W(2)W(3)W(5)W(6)W(7)G(4, 8) W(1)W(2)W(4)W(5)W(6)W(7)G(3, 8) W(1)W(3)W(4)W(5)W(6)W(7)G(2, 8) W(2)W(3)W(4)W(5)W(6)W(7)G(1, 8) W(1)W(2)W(3)W(4)W(5)W(6)W(7)W(8)
\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr} 1 & -N & 0 & N^{2} & 0 & 0 & 0 & -N^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{6} \\ 0 & e_{1} & -e_{1} & -N e_{1} & -e_{1} & 0 & N e_{1} & N^{2} e_{1} & -e_{1} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{1} & -N^{3} e_{1} & -e_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{1} & N^{4} e_{1} & -e_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{4} e_{1} & -N^{5} e_{1} \\ 0 & 0 & e_{2} & -N e_{2} & 0 & N e_{2} & 0 & N^{2} e_{2} & 0 & N e_{2} & 0 & 0 & 0 & -N^{2} e_{2} & 0 & -N^{3} e_{2} & 0 & N e_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{2} & 0 & N^{4} e_{2} & 0 & N e_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{4} e_{2} & 0 & -N^{5} e_{2} \\ 0 & 0 & 0 & e_{1} e_{2} & 0 & -e_{1} e_{2} & -e_{1} e_{2} & -N e_{1} e_{2} & 0 & -e_{1} e_{2} & 0 & e_{1} e_{2} & 0 & N e_{1} e_{2} & N e_{1} e_{2} & N^{2} e_{1} e_{2} & 0 & -e_{1} e_{2} & 0 & e_{1} e_{2} & e_{1} e_{2} & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{2} & 0 & 0 & -N^{2} e_{1} e_{2} & -N^{2} e_{1} e_{2} & -N^{3} e_{1} e_{2} & 0 & -e_{1} e_{2} & 0 & e_{1} e_{2} & e_{1} e_{2} & e_{1} e_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{2} & 0 & 0 & 0 & N^{3} e_{1} e_{2} & N^{3} e_{1} e_{2} & N^{4} e_{1} e_{2} \\ 0 & 0 & 0 & 0 & e_{3} & -N e_{3} & -N e_{3} & N^{2} e_{3} & 0 & 0 & 0 & 0 & -N^{2} e_{3} & 0 & 0 & -N^{3} e_{3} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{3} & 0 & 0 & N^{4} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{4} e_{3} & 0 & 0 & -N^{5} e_{3} \\ 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} & 0 & -N e_{1} e_{3} & 0 & 0 & e_{1} e_{3} & 0 & N e_{1} e_{3} & 0 & N e_{1} e_{3} & N^{2} e_{1} e_{3} & 0 & 0 & e_{1} e_{3} & 0 & 0 & N e_{1} e_{3} & 0 & 0 & 0 & -N e_{1} e_{3} & 0 & 0 & -N^{2} e_{1} e_{3} & 0 & -N^{2} e_{1} e_{3} & -N^{3} e_{1} e_{3} & 0 & 0 & e_{1} e_{3} & 0 & 0 & 0 & N e_{1} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{3} & 0 & 0 & 0 & N^{3} e_{1} e_{3} & 0 & N^{3} e_{1} e_{3} & N^{4} e_{1} e_{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} & -N e_{2} e_{3} & 0 & 0 & -e_{2} e_{3} & -e_{2} e_{3} & N e_{2} e_{3} & N e_{2} e_{3} & 0 & N^{2} e_{2} e_{3} & 0 & 0 & -e_{2} e_{3} & -e_{2} e_{3} & 0 & N e_{2} e_{3} & 0 & -N e_{2} e_{3} & 0 & 0 & 0 & 0 & -N^{2} e_{2} e_{3} & -N^{2} e_{2} e_{3} & 0 & -N^{3} e_{2} e_{3} & 0 & 0 & -e_{2} e_{3} & -e_{2} e_{3} & 0 & 0 & N e_{2} e_{3} & 0 & -N e_{2} e_{3} & -N e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{2} e_{3} & N^{3} e_{2} e_{3} & 0 & N^{4} e_{2} e_{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} & -e_{1} e_{2} e_{3} & -e_{1} e_{2} e_{3} & -N e_{1} e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} & 0 & e_{1} e_{2} e_{3} & 0 & e_{1} e_{2} e_{3} & e_{1} e_{2} e_{3} & 0 & N e_{1} e_{2} e_{3} & N e_{1} e_{2} e_{3} & N e_{1} e_{2} e_{3} & N^{2} e_{1} e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} & 0 & e_{1} e_{2} e_{3} & e_{1} e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{2} e_{3} & 0 & 0 & -N e_{1} e_{2} e_{3} & -N e_{1} e_{2} e_{3} & 0 & 0 & -N^{2} e_{1} e_{2} e_{3} & -N^{2} e_{1} e_{2} e_{3} & -N^{2} e_{1} e_{2} e_{3} & -N^{3} e_{1} e_{2} e_{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & -N e_{4} & 0 & 0 & N^{2} e_{4} & N^{2} e_{4} & N^{2} e_{4} & -N^{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{4} & 0 & 0 & 0 & N^{4} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{4} e_{4} & 0 & 0 & 0 & -N^{5} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{4} & -e_{1} e_{4} & -e_{1} e_{4} & -N e_{1} e_{4} & -N e_{1} e_{4} & 0 & N^{2} e_{1} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{4} & 0 & 0 & -N^{2} e_{1} e_{4} & 0 & 0 & -N^{2} e_{1} e_{4} & -N^{3} e_{1} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{4} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{1} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{4} & 0 & 0 & 0 & N^{3} e_{1} e_{4} & 0 & 0 & N^{3} e_{1} e_{4} & N^{4} e_{1} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{4} & 0 & -N e_{2} e_{4} & 0 & -N e_{2} e_{4} & N^{2} e_{2} e_{4} & 0 & 0 & 0 & 0 & -e_{2} e_{4} & 0 & -N e_{2} e_{4} & 0 & 0 & 0 & N e_{2} e_{4} & -N^{2} e_{2} e_{4} & 0 & -N^{2} e_{2} e_{4} & 0 & -N^{3} e_{2} e_{4} & 0 & 0 & 0 & 0 & -e_{2} e_{4} & 0 & 0 & -N e_{2} e_{4} & 0 & 0 & N e_{2} e_{4} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{2} e_{4} & 0 & 0 & 0 & N^{2} e_{2} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{2} e_{4} & 0 & N^{3} e_{2} e_{4} & 0 & N^{4} e_{2} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{4} & 0 & -N e_{3} e_{4} & -N e_{3} e_{4} & N^{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & N e_{3} e_{4} & N e_{3} e_{4} & N e_{3} e_{4} & N e_{3} e_{4} & 0 & -N^{2} e_{3} e_{4} & -N^{2} e_{3} e_{4} & 0 & 0 & -N^{3} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N e_{3} e_{4} & N e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{3} e_{4} & 0 & N^{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{3} e_{4} & N^{3} e_{3} e_{4} & 0 & 0 & N^{4} e_{3} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} & 0 & 0 & -N e_{1} e_{2} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} & 0 & e_{1} e_{2} e_{4} & 0 & 0 & N e_{1} e_{2} e_{4} & 0 & N e_{1} e_{2} e_{4} & N e_{1} e_{2} e_{4} & N^{2} e_{1} e_{2} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{4} & 0 & N e_{1} e_{2} e_{4} & 0 & 0 & 0 & -N e_{1} e_{2} e_{4} & 0 & 0 & -N e_{1} e_{2} e_{4} & 0 & -N e_{1} e_{2} e_{4} & 0 & -N^{2} e_{1} e_{2} e_{4} & 0 & -N^{2} e_{1} e_{2} e_{4} & -N^{2} e_{1} e_{2} e_{4} & -N^{3} e_{1} e_{2} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{4} & 0 & -N e_{1} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{3} e_{4} & -e_{1} e_{3} e_{4} & 0 & 0 & 0 & N e_{1} e_{3} e_{4} & N e_{1} e_{3} e_{4} & 0 & N e_{1} e_{3} e_{4} & N^{2} e_{1} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{3} e_{4} & -e_{1} e_{3} e_{4} & 0 & e_{1} e_{3} e_{4} & 0 & -e_{1} e_{3} e_{4} & 0 & 0 & 0 & N e_{1} e_{3} e_{4} & 0 & -N e_{1} e_{3} e_{4} & 0 & 0 & 0 & 0 & -N e_{1} e_{3} e_{4} & -N e_{1} e_{3} e_{4} & 0 & 0 & -N^{2} e_{1} e_{3} e_{4} & -N^{2} e_{1} e_{3} e_{4} & 0 & -N^{2} e_{1} e_{3} e_{4} & -N^{3} e_{1} e_{3} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{4} & -N e_{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{2} e_{3} e_{4} & -e_{2} e_{3} e_{4} & -e_{2} e_{3} e_{4} & N e_{2} e_{3} e_{4} & N e_{2} e_{3} e_{4} & N e_{2} e_{3} e_{4} & 0 & N^{2} e_{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{2} e_{3} e_{4} & 0 & e_{2} e_{3} e_{4} & 0 & e_{2} e_{3} e_{4} & e_{2} e_{3} e_{4} & N e_{2} e_{3} e_{4} & 0 & -N e_{2} e_{3} e_{4} & 0 & -N e_{2} e_{3} e_{4} & -N e_{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{2} e_{3} e_{4} & -N^{2} e_{2} e_{3} e_{4} & -N^{2} e_{2} e_{3} e_{4} & 0 & -N^{3} e_{2} e_{3} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} e_{4} & -e_{1} e_{2} e_{3} e_{4} & -e_{1} e_{2} e_{3} e_{4} & -e_{1} e_{2} e_{3} e_{4} & -N e_{1} e_{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} e_{4} & 0 & e_{1} e_{2} e_{3} e_{4} & 0 & e_{1} e_{2} e_{3} e_{4} & e_{1} e_{2} e_{3} e_{4} & 0 & e_{1} e_{2} e_{3} e_{4} & e_{1} e_{2} e_{3} e_{4} & e_{1} e_{2} e_{3} e_{4} & 0 & N e_{1} e_{2} e_{3} e_{4} & N e_{1} e_{2} e_{3} e_{4} & N e_{1} e_{2} e_{3} e_{4} & N e_{1} e_{2} e_{3} e_{4} & N^{2} e_{1} e_{2} e_{3} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{5} & -N e_{5} & 0 & 0 & 0 & N^{2} e_{5} & 0 & 0 & 0 & 0 & 0 & -N^{3} e_{5} & -N^{3} e_{5} & -N^{3} e_{5} & -N^{3} e_{5} & N^{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{4} e_{5} & 0 & 0 & 0 & 0 & -N^{5} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{5} & -e_{1} e_{5} & -e_{1} e_{5} & -e_{1} e_{5} & -N e_{1} e_{5} & 0 & 0 & N e_{1} e_{5} & N e_{1} e_{5} & N e_{1} e_{5} & N^{2} e_{1} e_{5} & N^{2} e_{1} e_{5} & N^{2} e_{1} e_{5} & 0 & -N^{3} e_{1} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{5} & 0 & 0 & 0 & N^{3} e_{1} e_{5} & 0 & 0 & 0 & N^{3} e_{1} e_{5} & N^{4} e_{1} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{5} & 0 & 0 & -N e_{2} e_{5} & N e_{2} e_{5} & N e_{2} e_{5} & 0 & 0 & 0 & N^{2} e_{2} e_{5} & N^{2} e_{2} e_{5} & 0 & N^{2} e_{2} e_{5} & -N^{3} e_{2} e_{5} & 0 & 0 & 0 & 0 & 0 & -e_{2} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{2} e_{5} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{2} e_{5} & N^{3} e_{2} e_{5} & 0 & 0 & N^{3} e_{2} e_{5} & 0 & N^{4} e_{2} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{5} & 0 & 0 & -N e_{3} e_{5} & 0 & -N e_{3} e_{5} & 0 & 0 & N^{2} e_{3} e_{5} & 0 & N^{2} e_{3} e_{5} & N^{2} e_{3} e_{5} & -N^{3} e_{3} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N e_{3} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{3} e_{5} & 0 & 0 & 0 & -N^{2} e_{3} e_{5} & 0 & 0 & -N^{2} e_{3} e_{5} & 0 & N^{3} e_{3} e_{5} & 0 & N^{3} e_{3} e_{5} & 0 & 0 & N^{4} e_{3} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} e_{5} & 0 & 0 & -N e_{4} e_{5} & 0 & -N e_{4} e_{5} & -N e_{4} e_{5} & 0 & N^{2} e_{4} e_{5} & N^{2} e_{4} e_{5} & N^{2} e_{4} e_{5} & -N^{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{4} e_{5} & -N^{2} e_{4} e_{5} & -N^{2} e_{4} e_{5} & -N^{2} e_{4} e_{5} & 0 & -N^{2} e_{4} e_{5} & -N^{2} e_{4} e_{5} & 0 & 0 & N^{3} e_{4} e_{5} & N^{3} e_{4} e_{5} & 0 & 0 & 0 & N^{4} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{5} & -e_{1} e_{2} e_{5} & -e_{1} e_{2} e_{5} & -e_{1} e_{2} e_{5} & -e_{1} e_{2} e_{5} & 0 & -N e_{1} e_{2} e_{5} & -N e_{1} e_{2} e_{5} & 0 & 0 & N^{2} e_{1} e_{2} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{5} & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{2} e_{5} & 0 & 0 & -N e_{1} e_{2} e_{5} & 0 & 0 & 0 & -N^{2} e_{1} e_{2} e_{5} & 0 & 0 & -N^{2} e_{1} e_{2} e_{5} & -N^{2} e_{1} e_{2} e_{5} & -N^{3} e_{1} e_{2} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{5} & 0 & 0 & 0 & -e_{1} e_{3} e_{5} & -N e_{1} e_{3} e_{5} & 0 & -N e_{1} e_{3} e_{5} & 0 & N^{2} e_{1} e_{3} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{3} e_{5} & 0 & -e_{1} e_{3} e_{5} & 0 & 0 & 0 & e_{1} e_{3} e_{5} & 0 & -N e_{1} e_{3} e_{5} & 0 & 0 & 0 & N e_{1} e_{3} e_{5} & -N e_{1} e_{3} e_{5} & 0 & 0 & 0 & -N^{2} e_{1} e_{3} e_{5} & 0 & -N^{2} e_{1} e_{3} e_{5} & 0 & -N^{2} e_{1} e_{3} e_{5} & -N^{3} e_{1} e_{3} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{4} e_{5} & 0 & 0 & 0 & 0 & -N e_{1} e_{4} e_{5} & -N e_{1} e_{4} e_{5} & 0 & N^{2} e_{1} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{4} e_{5} & e_{1} e_{4} e_{5} & e_{1} e_{4} e_{5} & e_{1} e_{4} e_{5} & 0 & 0 & N e_{1} e_{4} e_{5} & N e_{1} e_{4} e_{5} & N e_{1} e_{4} e_{5} & N e_{1} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{1} e_{4} e_{5} & -N^{2} e_{1} e_{4} e_{5} & 0 & 0 & -N^{2} e_{1} e_{4} e_{5} & -N^{3} e_{1} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{5} & 0 & 0 & -N e_{2} e_{3} e_{5} & 0 & 0 & -N e_{2} e_{3} e_{5} & N^{2} e_{2} e_{3} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{5} & 0 & e_{2} e_{3} e_{5} & 0 & 0 & 0 & -N e_{2} e_{3} e_{5} & 0 & -N e_{2} e_{3} e_{5} & 0 & 0 & 0 & 0 & N e_{2} e_{3} e_{5} & N e_{2} e_{3} e_{5} & -N^{2} e_{2} e_{3} e_{5} & 0 & -N^{2} e_{2} e_{3} e_{5} & -N^{2} e_{2} e_{3} e_{5} & 0 & -N^{3} e_{2} e_{3} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{4} e_{5} & 0 & 0 & -N e_{2} e_{4} e_{5} & 0 & -N e_{2} e_{4} e_{5} & N^{2} e_{2} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{2} e_{4} e_{5} & -e_{2} e_{4} e_{5} & 0 & 0 & 0 & 0 & N e_{2} e_{4} e_{5} & N e_{2} e_{4} e_{5} & 0 & 0 & 0 & N e_{2} e_{4} e_{5} & N e_{2} e_{4} e_{5} & 0 & N e_{2} e_{4} e_{5} & -N^{2} e_{2} e_{4} e_{5} & -N^{2} e_{2} e_{4} e_{5} & 0 & -N^{2} e_{2} e_{4} e_{5} & 0 & -N^{3} e_{2} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{4} e_{5} & 0 & 0 & -N e_{3} e_{4} e_{5} & -N e_{3} e_{4} e_{5} & N^{2} e_{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{3} e_{4} e_{5} & -e_{3} e_{4} e_{5} & -e_{3} e_{4} e_{5} & 0 & 0 & 0 & N e_{3} e_{4} e_{5} & N e_{3} e_{4} e_{5} & N e_{3} e_{4} e_{5} & N e_{3} e_{4} e_{5} & N e_{3} e_{4} e_{5} & N e_{3} e_{4} e_{5} & 0 & -N^{2} e_{3} e_{4} e_{5} & -N^{2} e_{3} e_{4} e_{5} & -N^{2} e_{3} e_{4} e_{5} & 0 & 0 & -N^{3} e_{3} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{5} & 0 & 0 & 0 & -N e_{1} e_{2} e_{3} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{5} & 0 & e_{1} e_{2} e_{3} e_{5} & 0 & 0 & e_{1} e_{2} e_{3} e_{5} & 0 & 0 & 0 & N e_{1} e_{2} e_{3} e_{5} & 0 & N e_{1} e_{2} e_{3} e_{5} & N e_{1} e_{2} e_{3} e_{5} & N e_{1} e_{2} e_{3} e_{5} & N^{2} e_{1} e_{2} e_{3} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} e_{5} & 0 & 0 & -N e_{1} e_{2} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{4} e_{5} & -e_{1} e_{2} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N e_{1} e_{2} e_{4} e_{5} & N e_{1} e_{2} e_{4} e_{5} & 0 & N e_{1} e_{2} e_{4} e_{5} & N e_{1} e_{2} e_{4} e_{5} & N^{2} e_{1} e_{2} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{4} e_{5} & 0 & -N e_{1} e_{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{3} e_{4} e_{5} & -e_{1} e_{3} e_{4} e_{5} & -e_{1} e_{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & N e_{1} e_{3} e_{4} e_{5} & N e_{1} e_{3} e_{4} e_{5} & N e_{1} e_{3} e_{4} e_{5} & 0 & N e_{1} e_{3} e_{4} e_{5} & N^{2} e_{1} e_{3} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{4} e_{5} & -N e_{2} e_{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{2} e_{3} e_{4} e_{5} & -e_{2} e_{3} e_{4} e_{5} & -e_{2} e_{3} e_{4} e_{5} & -e_{2} e_{3} e_{4} e_{5} & N e_{2} e_{3} e_{4} e_{5} & N e_{2} e_{3} e_{4} e_{5} & N e_{2} e_{3} e_{4} e_{5} & N e_{2} e_{3} e_{4} e_{5} & 0 & N^{2} e_{2} e_{3} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} e_{4} e_{5} & -e_{1} e_{2} e_{3} e_{4} e_{5} & -e_{1} e_{2} e_{3} e_{4} e_{5} & -e_{1} e_{2} e_{3} e_{4} e_{5} & -e_{1} e_{2} e_{3} e_{4} e_{5} & -N e_{1} e_{2} e_{3} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{6} & -N e_{6} & 0 & 0 & 0 & 0 & N^{2} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{3} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{4} e_{6} & N^{4} e_{6} & N^{4} e_{6} & N^{4} e_{6} & N^{4} e_{6} & -N^{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{6} & -e_{1} e_{6} & -e_{1} e_{6} & -e_{1} e_{6} & -e_{1} e_{6} & -N e_{1} e_{6} & 0 & 0 & 0 & N e_{1} e_{6} & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{6} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{1} e_{6} & -N^{2} e_{1} e_{6} & -N^{2} e_{1} e_{6} & -N^{2} e_{1} e_{6} & -N^{3} e_{1} e_{6} & -N^{3} e_{1} e_{6} & -N^{3} e_{1} e_{6} & -N^{3} e_{1} e_{6} & 0 & N^{4} e_{1} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{6} & 0 & 0 & 0 & -N e_{2} e_{6} & N e_{2} e_{6} & N e_{2} e_{6} & N e_{2} e_{6} & -N e_{2} e_{6} & 0 & 0 & 0 & 0 & 0 & N^{2} e_{2} e_{6} & 0 & 0 & -N^{2} e_{2} e_{6} & -N^{2} e_{2} e_{6} & -N^{2} e_{2} e_{6} & 0 & 0 & 0 & 0 & -N^{3} e_{2} e_{6} & -N^{3} e_{2} e_{6} & -N^{3} e_{2} e_{6} & 0 & -N^{3} e_{2} e_{6} & N^{4} e_{2} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{6} & 0 & 0 & 0 & -N e_{3} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{3} e_{6} & -N^{2} e_{3} e_{6} & -N^{2} e_{3} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{3} e_{3} e_{6} & -N^{3} e_{3} e_{6} & 0 & -N^{3} e_{3} e_{6} & -N^{3} e_{3} e_{6} & N^{4} e_{3} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} e_{6} & 0 & 0 & 0 & -N e_{4} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{4} e_{6} & 0 & N^{2} e_{4} e_{6} & 0 & 0 & N^{2} e_{4} e_{6} & 0 & 0 & 0 & -N^{3} e_{4} e_{6} & 0 & -N^{3} e_{4} e_{6} & -N^{3} e_{4} e_{6} & -N^{3} e_{4} e_{6} & N^{4} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{5} e_{6} & 0 & 0 & 0 & -N e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{5} e_{6} & 0 & N^{2} e_{5} e_{6} & N^{2} e_{5} e_{6} & 0 & N^{2} e_{5} e_{6} & N^{2} e_{5} e_{6} & N^{2} e_{5} e_{6} & 0 & -N^{3} e_{5} e_{6} & -N^{3} e_{5} e_{6} & -N^{3} e_{5} e_{6} & -N^{3} e_{5} e_{6} & N^{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{6} & -e_{1} e_{2} e_{6} & -e_{1} e_{2} e_{6} & -e_{1} e_{2} e_{6} & 0 & 0 & 0 & e_{1} e_{2} e_{6} & e_{1} e_{2} e_{6} & e_{1} e_{2} e_{6} & -N e_{1} e_{2} e_{6} & 0 & 0 & N e_{1} e_{2} e_{6} & N e_{1} e_{2} e_{6} & N e_{1} e_{2} e_{6} & N e_{1} e_{2} e_{6} & N e_{1} e_{2} e_{6} & N e_{1} e_{2} e_{6} & 0 & N^{2} e_{1} e_{2} e_{6} & N^{2} e_{1} e_{2} e_{6} & N^{2} e_{1} e_{2} e_{6} & 0 & 0 & -N^{3} e_{1} e_{2} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{6} & 0 & 0 & -e_{1} e_{3} e_{6} & e_{1} e_{3} e_{6} & e_{1} e_{3} e_{6} & 0 & 0 & 0 & -N e_{1} e_{3} e_{6} & N e_{1} e_{3} e_{6} & N e_{1} e_{3} e_{6} & 0 & 0 & 0 & N e_{1} e_{3} e_{6} & N e_{1} e_{3} e_{6} & 0 & N e_{1} e_{3} e_{6} & N^{2} e_{1} e_{3} e_{6} & N^{2} e_{1} e_{3} e_{6} & 0 & N^{2} e_{1} e_{3} e_{6} & 0 & -N^{3} e_{1} e_{3} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{4} e_{6} & 0 & 0 & -e_{1} e_{4} e_{6} & 0 & -e_{1} e_{4} e_{6} & 0 & 0 & 0 & -N e_{1} e_{4} e_{6} & 0 & -N e_{1} e_{4} e_{6} & 0 & 0 & 0 & 0 & N e_{1} e_{4} e_{6} & N e_{1} e_{4} e_{6} & N^{2} e_{1} e_{4} e_{6} & 0 & N^{2} e_{1} e_{4} e_{6} & N^{2} e_{1} e_{4} e_{6} & 0 & -N^{3} e_{1} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{5} e_{6} & 0 & 0 & -e_{1} e_{5} e_{6} & 0 & -e_{1} e_{5} e_{6} & -e_{1} e_{5} e_{6} & 0 & 0 & -N e_{1} e_{5} e_{6} & 0 & -N e_{1} e_{5} e_{6} & -N e_{1} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{5} e_{6} & N^{2} e_{1} e_{5} e_{6} & N^{2} e_{1} e_{5} e_{6} & 0 & -N^{3} e_{1} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{6} & -e_{2} e_{3} e_{6} & -e_{2} e_{3} e_{6} & -e_{2} e_{3} e_{6} & -e_{2} e_{3} e_{6} & 0 & -N e_{2} e_{3} e_{6} & N e_{2} e_{3} e_{6} & N e_{2} e_{3} e_{6} & N e_{2} e_{3} e_{6} & N e_{2} e_{3} e_{6} & 0 & 0 & 0 & 0 & 0 & N^{2} e_{2} e_{3} e_{6} & N^{2} e_{2} e_{3} e_{6} & 0 & 0 & N^{2} e_{2} e_{3} e_{6} & -N^{3} e_{2} e_{3} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{4} e_{6} & 0 & 0 & 0 & -e_{2} e_{4} e_{6} & 0 & -N e_{2} e_{4} e_{6} & 0 & 0 & 0 & N e_{2} e_{4} e_{6} & -N e_{2} e_{4} e_{6} & 0 & 0 & 0 & N^{2} e_{2} e_{4} e_{6} & 0 & N^{2} e_{2} e_{4} e_{6} & 0 & N^{2} e_{2} e_{4} e_{6} & -N^{3} e_{2} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & -N e_{2} e_{5} e_{6} & 0 & 0 & 0 & 0 & -N e_{2} e_{5} e_{6} & -N e_{2} e_{5} e_{6} & 0 & 0 & N^{2} e_{2} e_{5} e_{6} & N^{2} e_{2} e_{5} e_{6} & 0 & N^{2} e_{2} e_{5} e_{6} & -N^{3} e_{2} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{4} e_{6} & 0 & 0 & 0 & 0 & 0 & -N e_{3} e_{4} e_{6} & 0 & 0 & -N e_{3} e_{4} e_{6} & 0 & 0 & 0 & N^{2} e_{3} e_{4} e_{6} & 0 & 0 & N^{2} e_{3} e_{4} e_{6} & N^{2} e_{3} e_{4} e_{6} & -N^{3} e_{3} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & -N e_{3} e_{5} e_{6} & 0 & 0 & -N e_{3} e_{5} e_{6} & 0 & -N e_{3} e_{5} e_{6} & 0 & N^{2} e_{3} e_{5} e_{6} & 0 & N^{2} e_{3} e_{5} e_{6} & N^{2} e_{3} e_{5} e_{6} & -N^{3} e_{3} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & -N e_{4} e_{5} e_{6} & 0 & 0 & -N e_{4} e_{5} e_{6} & -N e_{4} e_{5} e_{6} & 0 & 0 & N^{2} e_{4} e_{5} e_{6} & N^{2} e_{4} e_{5} e_{6} & N^{2} e_{4} e_{5} e_{6} & -N^{3} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{6} & -e_{1} e_{2} e_{3} e_{6} & -e_{1} e_{2} e_{3} e_{6} & -e_{1} e_{2} e_{3} e_{6} & -e_{1} e_{2} e_{3} e_{6} & 0 & -e_{1} e_{2} e_{3} e_{6} & -e_{1} e_{2} e_{3} e_{6} & 0 & 0 & -N e_{1} e_{2} e_{3} e_{6} & -N e_{1} e_{2} e_{3} e_{6} & 0 & 0 & 0 & N^{2} e_{1} e_{2} e_{3} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} e_{6} & 0 & 0 & 0 & -e_{1} e_{2} e_{4} e_{6} & 0 & 0 & -e_{1} e_{2} e_{4} e_{6} & 0 & -N e_{1} e_{2} e_{4} e_{6} & 0 & -N e_{1} e_{2} e_{4} e_{6} & 0 & 0 & N^{2} e_{1} e_{2} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{2} e_{5} e_{6} & -N e_{1} e_{2} e_{5} e_{6} & 0 & 0 & N^{2} e_{1} e_{2} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{4} e_{6} & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{3} e_{4} e_{6} & -N e_{1} e_{3} e_{4} e_{6} & 0 & 0 & -N e_{1} e_{3} e_{4} e_{6} & 0 & N^{2} e_{1} e_{3} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{3} e_{5} e_{6} & 0 & -N e_{1} e_{3} e_{5} e_{6} & 0 & N^{2} e_{1} e_{3} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{4} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{4} e_{5} e_{6} & -N e_{1} e_{4} e_{5} e_{6} & 0 & N^{2} e_{1} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{4} e_{6} & 0 & 0 & 0 & -N e_{2} e_{3} e_{4} e_{6} & 0 & 0 & 0 & -N e_{2} e_{3} e_{4} e_{6} & N^{2} e_{2} e_{3} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{5} e_{6} & 0 & 0 & 0 & -N e_{2} e_{3} e_{5} e_{6} & 0 & 0 & -N e_{2} e_{3} e_{5} e_{6} & N^{2} e_{2} e_{3} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{4} e_{5} e_{6} & 0 & 0 & 0 & -N e_{2} e_{4} e_{5} e_{6} & 0 & -N e_{2} e_{4} e_{5} e_{6} & N^{2} e_{2} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{4} e_{5} e_{6} & 0 & 0 & 0 & -N e_{3} e_{4} e_{5} e_{6} & -N e_{3} e_{4} e_{5} e_{6} & N^{2} e_{3} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{4} e_{6} & 0 & 0 & 0 & 0 & -N e_{1} e_{2} e_{3} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{5} e_{6} & 0 & 0 & 0 & -N e_{1} e_{2} e_{3} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} e_{5} e_{6} & 0 & 0 & -N e_{1} e_{2} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{4} e_{5} e_{6} & 0 & -N e_{1} e_{3} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{4} e_{5} e_{6} & -N e_{2} e_{3} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{4} e_{5} e_{6} \end{array}\right)
开放探讨¶
-
对于现在扩展维纳的问题都是n=2或者是n=3时候的模板题,对于更高维的情况,可以编写自动化的脚本来完整自动选择关系、自动构造格等步骤,比如上述内容就是自动生成的。但是对于n每增加1,矩阵则是指数倍增加,因为这是一个2^n * 2^n的矩阵,这时候直接调用
sagemath
中的LLL()
变得非常缓慢,大约n=8的情况已经运行不出来了,我曾尝试寻找LLL
在CUDA上的并行算法或是一些其他优化方案实现,但是都是找到了论文没有给出源码的情况。如果您对这方面有所研究或者有什么更好的优化方法,欢迎联系我(Xenny)一起进行更加深入的探讨。
EXP¶
-
考虑到不是每个人都需要深入研究扩展维纳攻击,这里还是给出n=2时候的EXP以供使用
e1 = ... e2 = ... N = ... a = 5/14 D = diagonal_matrix(ZZ, [N, int(N^(1/2)), int(N^(1+a)), 1]) M = matrix(ZZ, [[1, -N, 0, N^2], [0, e1, -e1, -e1*N], [0, 0, e2, -e2*N], [0, 0, 0, e1*e2]])*D L = M.LLL() t = vector(ZZ, L[0]) x = t * M^(-1) phi = int(x[1]/x[0]*e1)