扩展维纳攻击 ¶
扩展维纳攻击
来自《Extending Wiener's Attack in the Presence of Many Decrypting Exponents》
,相关题目在 CTF 中已经出现了,例如 2020 羊城杯的 Simple,但都是一些模板题,这里将详细分析原论文中提出的方法以及分析方式,写明扩展维纳攻击原理以及在文末给出了一些开放问题欢迎讨论。
原理分析 ¶
维纳(Wiener)的方法 ¶
-
维纳
Wiener
提出了一种关于私钥过小时对N 进行分解的一种方式。并给出了证明当d<13N14满足时 (还应满足q<p<2q,因这里及后文主要是对私钥进行探讨,故忽略这类条件) 一定能够分解N。
-
以下为原论文中对于
Wiener's Approach
的部分描述,部分内容有删减,其实这里也就是维纳攻击的证明,所以要想更详细了解请再看维纳攻击的原理,这里我们主要后面要用到这里的式1
。方法如下已知
e∗d−k∗λ(N)=1这里λ(N)=lcm(p−1,q−1)=φ(N)/g,令s=1−p−q 则有
edg−kN=g+ks将两边同时除以dgN 则有
eN−kdg=g+ksdgN=(kdg)(sN)+1dN我们知道这里有e≈N,s≈N1/2,所以有k/(dg)≈1。则我们可以知道等式右边约等于N−1/2。我们都知道当
|x−a/b|<1/(2b2)时则a/b 是一个x 连分数近似(
连分数定理Continued Fractions
)所以当
d<√22gN14时有k/dg 是e/N 的连分数近似,即能通过连分数展开覆盖。
-
注意这里前面所说的范围和后面的范围并不矛盾
这里对一些参数的值的近似并不严格,所以和维纳攻击的严格范围有出入,具体细节可参考维纳攻击的证明。
郭(Guo)的方法 ¶
-
郭针对不止一个e 的情况进行研究,但是郭只研究了两个以及三个e 的情况,上上节一样,这里我们还是使用原文内容翻译 + 解释的写法。对于两个e 的情况,我们可以考虑
e1d1g−k1(p−1)(q−1)=ge2d2g−k2(p−1)(q−1)=g简单化简可以得到下式子
k2d1e1−k1d2e2=k2−k1两边同时除以k2d1e2
e1e2−k1d2k2d1=k2−k1k2d1e2设di<Nα,则等式右边约等于N−(1+α)
则当
2(k2d1)2<N1+α时k1d2/(k2d1) 是e1/e2 的连分数近似。当k2 和d1 最多为Nα 而且g 很小时,得到
α<1/3−ϵ (ϵ>0) -
然而即使我们得到了(k1d2)/(k2d1) 还是无法分解N,原文后面还讨论了郭的提议,尝试对k1d2 进行分解,这里不再讲解。
扩展维纳攻击 ¶
-
上述部分内容截至目前(2021/10)网络上已经有很多博文进行了讲解了分析,但是对于具体扩展维纳攻击的原理以及格构造或者是更高维的推广都没有给出。这里我将详细的对原论文内容进行翻译以及讲解。
-
为了将分析扩展到n 个加密指数ei(解密指数di 很小),我们同时使用维纳和郭的方法,我们将关系
digei−kiN=g+kis记为维纳等式Wi,同样我们可以得到关系
kidjej−kjdiei=ki−kj记为郭等式Gi,j。
我们假设di 和ki 都小于Nαn,且g 很小,s≈N1/2。可以注意到Wi 和Gi 的右侧非常小,实际上分别最多为N1/2+α 和Nα。
最后,我们考虑复合关系式比如WuGv,w,显然大小为N1/2+2α。
-
原文中这里是定义了两个关系式以及指出了他们的大小范围,这个范围很重要也容容易分析处理,之后我们所做的其实就是使用这两个式子的不同复合关系去构造一个格,然后通过求其基向量得到d1g/k1,从而可以算得φ(N) 并可以进一步的对N 进行分解。
-
其实到这里原理分析已经结束,关于格的构造其实也并不复杂,但是核心是这里的复合关系的选取,以及对于最后α 大小的分析。
两个小解密指数的情况 ¶
-
我们选取关系W1,G1,2,W1W2, 这样便有
d1ge1−k1N=g+k1sk1d2e2−k2d1e1=k1−k2d1d2g2e1e2−d1gk2e1N−d2gk1e2N+k1k2N2=(g+k1s)(g+k2s)我们对第一个关系式乘上k2,这样左边便全是由d1d2g2,d1gk2,d2gk1 和k1k2 构成,这样我们便可以用已知内容构造格将上述式子转化为矩阵运算
(k1k2d1gk2d2gk1d1d2g2)(1−N0N2e1−e1−e1Ne2−e2Ne1e2)=(k1k2k2(g+k1s)g(k1−k2)(g+k1s)(g+k2s))等式右边向量的大小为N2α2,N1/2+2α2,Nα2,N1+2α2, 为了让大小相等,我们可以考虑构造一个 D 矩阵。
D=(NN1/2N1+α21)最终我们构造的矩阵为
L2=(1−N0N2e1−e1−e1Ne2−e2Ne1e2)∗D这样向量b=(k1k2d1gk2d2gk1d1d2g2) 便有
‖这也就是为什么前面需要构造 D 矩阵的原因,给定 D 矩阵后,我们可以得到一个上界,这样问题可以转化为类 SVP 问题。
那么这里的 b 向量其实我们使用格基规约算法例如
LLL
便可以得到基向量 b,然后我们求解 b_2/b_1 即得到 d_1g/k_1之后我们就可以得到
\varphi(N) = \frac{edg}{k} - \frac{g}{k} = \lfloor edg/k\rceil我们假设这些格中最短向量长度为 \Delta^{1/4-\epsilon},其中 \Delta = det(L_2) = N^{13/2 + \alpha_2}。如果这些格是随机的,我们甚至几乎可以肯定没有格点比闵可夫斯基界(Minkowski's bound)2\Delta^{1/4},所以 bL_2 是最短向量当
N^{1+2\alpha_2} < (1/c_2)\left(N^{13/2+\alpha_2}\right)^{1/4}对于一些小的 c_2,如果有
\alpha_2 <5/14 - \epsilon^{'}则我们可以通过格基规约找到向量 b。
-
上述内容是原文中给出的当两个小解密指数是进行的攻击细节,并且分析了 \alpha 的大小关系。
三个小解密指数的情况 ¶
-
对于三个指数的情况我们额外选取 G_{1, 3}, W_1G_{2, 3}, W_2G_{1,3}
这样我们的向量 b 为
B = \begin{pmatrix} k_1k_2k_3&d_1gk_2k_3&k_1d_2gk_3&d_1d_2g^2k_3&k_1k_2d_3g&k_1d_3g&k_2d_3g&d_1d_2d_3g^3 \end{pmatrix}然后我们便可以构造格
L_3 = \left(\begin{array}{rrrrrrrr} 1 & -N & 0 & N^{2} & 0 & 0 & 0 & -N^{3} \\ 0 & e_{1} & -e_{1} & -N e_{1} & -e_{1} & 0 & N e_{1} & N^{2} e_{1} \\ 0 & 0 & e_{2} & -N e_{2} & 0 & N e_{2} & 0 & N^{2} e_{2} \\ 0 & 0 & 0 & e_{1} e_{2} & 0 & -e_{1} e_{2} & -e_{1} e_{2} & -N e_{1} e_{2} \\ 0 & 0 & 0 & 0 & e_{3} & -N e_{3} & -N e_{3} & N^{2} e_{3} \\ 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} & 0 & -N e_{1} e_{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} & -N e_{2} e_{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} \end{array}\right)其中
D = diag(\begin{array}{r} N^{\frac{3}{2}}&N&N^{a + \frac{3}{2}}&\sqrt{N}&N^{a + \frac{3}{2}}&N^{a + 1}&N^{a + 1}&1\end{array})同样我们可以得到
\Vert bL_2 \Vert <\sqrt{8}N^{3/2+2\alpha_3}则当
\alpha_3 <2/5 - \epsilon^{'}时可以通过格基规约求出向量 b。
四个小解密指数的情况 ¶
- 额外选取 G_{1, 4}, W_1G_{2, 4}, G_{1, 2}G_{3,4}, G_{1, 3}G_{2, 4}, W_1W_2G_{3, 4}, W_1W_3G_{2, 4}, W_2W_3G_{1, 4}, W_1W_2W_3W_4 进行构造。不再翻译。
分析 ¶
-
扩展维纳攻击结合上述三个例子已经详细的阐明了方法细节,但是其中没有讲解如何选取复合关系。其实在原文的附录中给出了复合关系的选取,以及给出了 \alpha_n 的表达式。
-
在原文附录部分,考虑 n 个指数 e_i,这样则有 2^n 个不同的量 h_j(一个表达式 e_i 的个数),这样我们的 L_n 在乘上 D 之前,矩阵 L_n 的行列式为 N^{n2^{n-1}}
这样最后一个关系 W_1W_2\dots W_n 最大为 N^{n/2 + n\alpha_n},这样我们便知道了任意情况的最大界值,我们只需要让其他值增加到这么多即可(即构造 D 矩阵)
引入了新的关系式
R_{u,v} = W_{i_1}\dots W_{i_u}G_{j_1, l_1}\dots G_{j_v, l_v}其中 i_1,\dots,i_u,j_1,\dots,j_u,l_1,\dots,l_v 都不同,那么这里最多会有 u + 2v 个指数 e_i,则我们的关系 R_{u,v} 最多为 N^{u/2 + (u+v)\alpha_n},同时注意我要需要所有系数的大小大致相同,所以我们在某些等式乘上 k_i,使得关系 R_{u, v} = N^{u/2 + (n-v)\alpha_n}。
最后我们再计算所有的大小与最大大小 N^{n/2 + n\alpha_n} 的差值,构造矩阵 D。
这样我们便完成了矩阵 D 的构造,同时设矩阵 D 里面指数的乘积为 \beta_n = x+y\alpha_n,这样有
det(L_n) \approx N^{n2^{n-1} + x + y\alpha_n}则有
N^{n/2 + n\alpha_n} < (1/c_n)\left(N^{n2^{n-1} + x + y\alpha_n}\right)^{1/2^n}对于小 c_n,有
\alpha_n <\frac{x}{n2^n - y} - \epsilon^{'}所以我们要想让 \alpha_n 更大就需要让 x 和 y 更大,这意味着我们要选取更多的 v 和更小的 u。比如在 n=2 的情况我们选取 W_1, G_{1, 2}, W_1W_2 而不是 W_1, W_2, W_1W_2 因为前者 \beta_2 = 5/2 + \alpha 而后者 \beta_2 = 2。
-
到这里,其实已经讲清楚了扩展维纳攻击的整个流程,如何选择复合关系,如何构造格,如何构造矩阵 D 以及如何求解。在原文的文末也给出了 n\le 5 时候的选择关系表。
这里我也给出 n\le8 的选择关系以及 n=6 时候构造的矩阵以供验证自己是否能够编写出选择关系式的逻辑代码。
- W(1) G(1, 2) W(1)W(2) G(1, 3) W(1)G(2, 3) W(2)G(1, 3) W(1)W(2)W(3) G(1, 4) W(1)G(2, 4) G(1, 2)G(3, 4) G(1, 3)G(2, 4) W(1)W(2)G(3, 4) W(1)W(3)G(2, 4) W(2)W(3)G(1, 4) W(1)W(2)W(3)W(4) G(1, 5) W(1)G(2, 5) G(1, 2)G(3, 5) G(1, 3)G(2, 5) G(1, 4)G(2, 5) W(1)W(2)G(3, 5) W(1)G(2, 3)G(4, 5) W(1)G(2, 4)G(3, 5) W(2)G(1, 3)G(4, 5) W(2)G(1, 4)G(3, 5) W(3)G(1, 4)G(2, 5) W(1)W(2)W(3)G(4, 5) W(1)W(2)W(4)G(3, 5) W(1)W(3)W(4)G(2, 5) W(2)W(3)W(4)G(1, 5) W(1)W(2)W(3)W(4)W(5) G(1, 6) W(1)G(2, 6) G(1, 2)G(3, 6) G(1, 3)G(2, 6) G(1, 4)G(2, 6) G(1, 5)G(2, 6) W(1)W(2)G(3, 6) W(1)G(2, 3)G(4, 6) W(1)G(2, 4)G(3, 6) W(1)G(2, 5)G(3, 6) G(1, 2)W(3)G(4, 6) G(1, 2)G(3, 4)G(5, 6) G(1, 2)G(3, 5)G(4, 6) G(1, 3)G(2, 4)G(5, 6) G(1, 3)G(2, 5)G(4, 6) G(1, 4)G(2, 5)G(3, 6) W(1)W(2)W(3)G(4, 6) W(1)W(2)G(3, 4)G(5, 6) W(1)W(2)G(3, 5)G(4, 6) W(1)W(3)G(2, 4)G(5, 6) W(1)W(3)G(2, 5)G(4, 6) W(1)W(4)G(2, 5)G(3, 6) W(2)W(3)G(1, 4)G(5, 6) W(2)W(3)G(1, 5)G(4, 6) W(2)W(4)G(1, 5)G(3, 6) W(3)W(4)G(1, 5)G(2, 6) W(1)W(2)W(3)W(4)G(5, 6) W(1)W(2)W(3)W(5)G(4, 6) W(1)W(2)W(4)W(5)G(3, 6) W(1)W(3)W(4)W(5)G(2, 6) W(2)W(3)W(4)W(5)G(1, 6) W(1)W(2)W(3)W(4)W(5)W(6) G(1, 7) W(1)G(2, 7) G(1, 2)G(3, 7) G(1, 3)G(2, 7) G(1, 4)G(2, 7) G(1, 5)G(2, 7) G(1, 6)G(2, 7) W(1)W(2)G(3, 7) W(1)G(2, 3)G(4, 7) W(1)G(2, 4)G(3, 7) W(1)G(2, 5)G(3, 7) W(1)G(2, 6)G(3, 7) G(1, 2)W(3)G(4, 7) G(1, 2)G(3, 4)G(5, 7) G(1, 2)G(3, 5)G(4, 7) G(1, 2)G(3, 6)G(4, 7) G(1, 3)G(2, 4)G(5, 7) G(1, 3)G(2, 5)G(4, 7) G(1, 3)G(2, 6)G(4, 7) G(1, 4)G(2, 5)G(3, 7) G(1, 4)G(2, 6)G(3, 7) G(1, 5)G(2, 6)G(3, 7) W(1)W(2)W(3)G(4, 7) W(1)W(2)G(3, 4)G(5, 7) W(1)W(2)G(3, 5)G(4, 7) W(1)W(2)G(3, 6)G(4, 7) W(1)G(2, 3)W(4)G(5, 7) W(1)G(2, 3)G(4, 5)G(6, 7) W(1)G(2, 3)G(4, 6)G(5, 7) W(1)G(2, 4)G(3, 5)G(6, 7) W(1)G(2, 4)G(3, 6)G(5, 7) W(1)G(2, 5)G(3, 6)G(4, 7) W(2)G(1, 3)W(4)G(5, 7) W(2)G(1, 3)G(4, 5)G(6, 7) W(2)G(1, 3)G(4, 6)G(5, 7) W(2)G(1, 4)G(3, 5)G(6, 7) W(2)G(1, 4)G(3, 6)G(5, 7) W(2)G(1, 5)G(3, 6)G(4, 7) W(3)G(1, 4)G(2, 5)G(6, 7) W(3)G(1, 4)G(2, 6)G(5, 7) W(3)G(1, 5)G(2, 6)G(4, 7) W(4)G(1, 5)G(2, 6)G(3, 7) W(1)W(2)W(3)W(4)G(5, 7) W(1)W(2)W(3)G(4, 5)G(6, 7) W(1)W(2)W(3)G(4, 6)G(5, 7) W(1)W(2)W(4)G(3, 5)G(6, 7) W(1)W(2)W(4)G(3, 6)G(5, 7) W(1)W(2)W(5)G(3, 6)G(4, 7) W(1)W(3)W(4)G(2, 5)G(6, 7) W(1)W(3)W(4)G(2, 6)G(5, 7) W(1)W(3)W(5)G(2, 6)G(4, 7) W(1)W(4)W(5)G(2, 6)G(3, 7) W(2)W(3)W(4)G(1, 5)G(6, 7) W(2)W(3)W(4)G(1, 6)G(5, 7) W(2)W(3)W(5)G(1, 6)G(4, 7) W(2)W(4)W(5)G(1, 6)G(3, 7) W(3)W(4)W(5)G(1, 6)G(2, 7) W(1)W(2)W(3)W(4)W(5)G(6, 7) W(1)W(2)W(3)W(4)W(6)G(5, 7) W(1)W(2)W(3)W(5)W(6)G(4, 7) W(1)W(2)W(4)W(5)W(6)G(3, 7) W(1)W(3)W(4)W(5)W(6)G(2, 7) W(2)W(3)W(4)W(5)W(6)G(1, 7) W(1)W(2)W(3)W(4)W(5)W(6)W(7) G(1, 8) W(1)G(2, 8) G(1, 2)G(3, 8) G(1, 3)G(2, 8) G(1, 4)G(2, 8) G(1, 5)G(2, 8) G(1, 6)G(2, 8) G(1, 7)G(2, 8) W(1)W(2)G(3, 8) W(1)G(2, 3)G(4, 8) W(1)G(2, 4)G(3, 8) W(1)G(2, 5)G(3, 8) W(1)G(2, 6)G(3, 8) W(1)G(2, 7)G(3, 8) G(1, 2)W(3)G(4, 8) G(1, 2)G(3, 4)G(5, 8) G(1, 2)G(3, 5)G(4, 8) G(1, 2)G(3, 6)G(4, 8) G(1, 2)G(3, 7)G(4, 8) G(1, 3)G(2, 4)G(5, 8) G(1, 3)G(2, 5)G(4, 8) G(1, 3)G(2, 6)G(4, 8) G(1, 3)G(2, 7)G(4, 8) G(1, 4)G(2, 5)G(3, 8) G(1, 4)G(2, 6)G(3, 8) G(1, 4)G(2, 7)G(3, 8) G(1, 5)G(2, 6)G(3, 8) G(1, 5)G(2, 7)G(3, 8) G(1, 6)G(2, 7)G(3, 8) W(1)W(2)W(3)G(4, 8) W(1)W(2)G(3, 4)G(5, 8) W(1)W(2)G(3, 5)G(4, 8) W(1)W(2)G(3, 6)G(4, 8) W(1)W(2)G(3, 7)G(4, 8) W(1)G(2, 3)W(4)G(5, 8) W(1)G(2, 3)G(4, 5)G(6, 8) W(1)G(2, 3)G(4, 6)G(5, 8) W(1)G(2, 3)G(4, 7)G(5, 8) W(1)G(2, 4)G(3, 5)G(6, 8) W(1)G(2, 4)G(3, 6)G(5, 8) W(1)G(2, 4)G(3, 7)G(5, 8) W(1)G(2, 5)G(3, 6)G(4, 8) W(1)G(2, 5)G(3, 7)G(4, 8) W(1)G(2, 6)G(3, 7)G(4, 8) G(1, 2)W(3)W(4)G(5, 8) G(1, 2)W(3)G(4, 5)G(6, 8) G(1, 2)W(3)G(4, 6)G(5, 8) G(1, 2)W(3)G(4, 7)G(5, 8) G(1, 2)G(3, 4)W(5)G(6, 8) G(1, 2)G(3, 4)G(5, 6)G(7, 8) G(1, 2)G(3, 4)G(5, 7)G(6, 8) G(1, 2)G(3, 5)G(4, 6)G(7, 8) G(1, 2)G(3, 5)G(4, 7)G(6, 8) G(1, 2)G(3, 6)G(4, 7)G(5, 8) G(1, 3)G(2, 4)W(5)G(6, 8) G(1, 3)G(2, 4)G(5, 6)G(7, 8) G(1, 3)G(2, 4)G(5, 7)G(6, 8) G(1, 3)G(2, 5)G(4, 6)G(7, 8) G(1, 3)G(2, 5)G(4, 7)G(6, 8) G(1, 3)G(2, 6)G(4, 7)G(5, 8) G(1, 4)G(2, 5)G(3, 6)G(7, 8) G(1, 4)G(2, 5)G(3, 7)G(6, 8) G(1, 4)G(2, 6)G(3, 7)G(5, 8) G(1, 5)G(2, 6)G(3, 7)G(4, 8) W(1)W(2)W(3)W(4)G(5, 8) W(1)W(2)W(3)G(4, 5)G(6, 8) W(1)W(2)W(3)G(4, 6)G(5, 8) W(1)W(2)W(3)G(4, 7)G(5, 8) W(1)W(2)G(3, 4)W(5)G(6, 8) W(1)W(2)G(3, 4)G(5, 6)G(7, 8) W(1)W(2)G(3, 4)G(5, 7)G(6, 8) W(1)W(2)G(3, 5)G(4, 6)G(7, 8) W(1)W(2)G(3, 5)G(4, 7)G(6, 8) W(1)W(2)G(3, 6)G(4, 7)G(5, 8) W(1)W(3)G(2, 4)W(5)G(6, 8) W(1)W(3)G(2, 4)G(5, 6)G(7, 8) W(1)W(3)G(2, 4)G(5, 7)G(6, 8) W(1)W(3)G(2, 5)G(4, 6)G(7, 8) W(1)W(3)G(2, 5)G(4, 7)G(6, 8) W(1)W(3)G(2, 6)G(4, 7)G(5, 8) W(1)W(4)G(2, 5)G(3, 6)G(7, 8) W(1)W(4)G(2, 5)G(3, 7)G(6, 8) W(1)W(4)G(2, 6)G(3, 7)G(5, 8) W(1)W(5)G(2, 6)G(3, 7)G(4, 8) W(2)W(3)G(1, 4)W(5)G(6, 8) W(2)W(3)G(1, 4)G(5, 6)G(7, 8) W(2)W(3)G(1, 4)G(5, 7)G(6, 8) W(2)W(3)G(1, 5)G(4, 6)G(7, 8) W(2)W(3)G(1, 5)G(4, 7)G(6, 8) W(2)W(3)G(1, 6)G(4, 7)G(5, 8) W(2)W(4)G(1, 5)G(3, 6)G(7, 8) W(2)W(4)G(1, 5)G(3, 7)G(6, 8) W(2)W(4)G(1, 6)G(3, 7)G(5, 8) W(2)W(5)G(1, 6)G(3, 7)G(4, 8) W(3)W(4)G(1, 5)G(2, 6)G(7, 8) W(3)W(4)G(1, 5)G(2, 7)G(6, 8) W(3)W(4)G(1, 6)G(2, 7)G(5, 8) W(3)W(5)G(1, 6)G(2, 7)G(4, 8) W(4)W(5)G(1, 6)G(2, 7)G(3, 8) W(1)W(2)W(3)W(4)W(5)G(6, 8) W(1)W(2)W(3)W(4)G(5, 6)G(7, 8) W(1)W(2)W(3)W(4)G(5, 7)G(6, 8) W(1)W(2)W(3)W(5)G(4, 6)G(7, 8) W(1)W(2)W(3)W(5)G(4, 7)G(6, 8) W(1)W(2)W(3)W(6)G(4, 7)G(5, 8) W(1)W(2)W(4)W(5)G(3, 6)G(7, 8) W(1)W(2)W(4)W(5)G(3, 7)G(6, 8) W(1)W(2)W(4)W(6)G(3, 7)G(5, 8) W(1)W(2)W(5)W(6)G(3, 7)G(4, 8) W(1)W(3)W(4)W(5)G(2, 6)G(7, 8) W(1)W(3)W(4)W(5)G(2, 7)G(6, 8) W(1)W(3)W(4)W(6)G(2, 7)G(5, 8) W(1)W(3)W(5)W(6)G(2, 7)G(4, 8) W(1)W(4)W(5)W(6)G(2, 7)G(3, 8) W(2)W(3)W(4)W(5)G(1, 6)G(7, 8) W(2)W(3)W(4)W(5)G(1, 7)G(6, 8) W(2)W(3)W(4)W(6)G(1, 7)G(5, 8) W(2)W(3)W(5)W(6)G(1, 7)G(4, 8) W(2)W(4)W(5)W(6)G(1, 7)G(3, 8) W(3)W(4)W(5)W(6)G(1, 7)G(2, 8) W(1)W(2)W(3)W(4)W(5)W(6)G(7, 8) W(1)W(2)W(3)W(4)W(5)W(7)G(6, 8) W(1)W(2)W(3)W(4)W(6)W(7)G(5, 8) W(1)W(2)W(3)W(5)W(6)W(7)G(4, 8) W(1)W(2)W(4)W(5)W(6)W(7)G(3, 8) W(1)W(3)W(4)W(5)W(6)W(7)G(2, 8) W(2)W(3)W(4)W(5)W(6)W(7)G(1, 8) W(1)W(2)W(3)W(4)W(5)W(6)W(7)W(8)
\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr} 1 & -N & 0 & N^{2} & 0 & 0 & 0 & -N^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{6} \\ 0 & e_{1} & -e_{1} & -N e_{1} & -e_{1} & 0 & N e_{1} & N^{2} e_{1} & -e_{1} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{1} & -N^{3} e_{1} & -e_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{1} & N^{4} e_{1} & -e_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{4} e_{1} & -N^{5} e_{1} \\ 0 & 0 & e_{2} & -N e_{2} & 0 & N e_{2} & 0 & N^{2} e_{2} & 0 & N e_{2} & 0 & 0 & 0 & -N^{2} e_{2} & 0 & -N^{3} e_{2} & 0 & N e_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{2} & 0 & N^{4} e_{2} & 0 & N e_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{4} e_{2} & 0 & -N^{5} e_{2} \\ 0 & 0 & 0 & e_{1} e_{2} & 0 & -e_{1} e_{2} & -e_{1} e_{2} & -N e_{1} e_{2} & 0 & -e_{1} e_{2} & 0 & e_{1} e_{2} & 0 & N e_{1} e_{2} & N e_{1} e_{2} & N^{2} e_{1} e_{2} & 0 & -e_{1} e_{2} & 0 & e_{1} e_{2} & e_{1} e_{2} & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{2} & 0 & 0 & -N^{2} e_{1} e_{2} & -N^{2} e_{1} e_{2} & -N^{3} e_{1} e_{2} & 0 & -e_{1} e_{2} & 0 & e_{1} e_{2} & e_{1} e_{2} & e_{1} e_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{2} & 0 & 0 & 0 & N^{3} e_{1} e_{2} & N^{3} e_{1} e_{2} & N^{4} e_{1} e_{2} \\ 0 & 0 & 0 & 0 & e_{3} & -N e_{3} & -N e_{3} & N^{2} e_{3} & 0 & 0 & 0 & 0 & -N^{2} e_{3} & 0 & 0 & -N^{3} e_{3} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{3} & 0 & 0 & N^{4} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{4} e_{3} & 0 & 0 & -N^{5} e_{3} \\ 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} & 0 & -N e_{1} e_{3} & 0 & 0 & e_{1} e_{3} & 0 & N e_{1} e_{3} & 0 & N e_{1} e_{3} & N^{2} e_{1} e_{3} & 0 & 0 & e_{1} e_{3} & 0 & 0 & N e_{1} e_{3} & 0 & 0 & 0 & -N e_{1} e_{3} & 0 & 0 & -N^{2} e_{1} e_{3} & 0 & -N^{2} e_{1} e_{3} & -N^{3} e_{1} e_{3} & 0 & 0 & e_{1} e_{3} & 0 & 0 & 0 & N e_{1} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{3} & 0 & 0 & 0 & N^{3} e_{1} e_{3} & 0 & N^{3} e_{1} e_{3} & N^{4} e_{1} e_{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} & -N e_{2} e_{3} & 0 & 0 & -e_{2} e_{3} & -e_{2} e_{3} & N e_{2} e_{3} & N e_{2} e_{3} & 0 & N^{2} e_{2} e_{3} & 0 & 0 & -e_{2} e_{3} & -e_{2} e_{3} & 0 & N e_{2} e_{3} & 0 & -N e_{2} e_{3} & 0 & 0 & 0 & 0 & -N^{2} e_{2} e_{3} & -N^{2} e_{2} e_{3} & 0 & -N^{3} e_{2} e_{3} & 0 & 0 & -e_{2} e_{3} & -e_{2} e_{3} & 0 & 0 & N e_{2} e_{3} & 0 & -N e_{2} e_{3} & -N e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{2} e_{3} & N^{3} e_{2} e_{3} & 0 & N^{4} e_{2} e_{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} & -e_{1} e_{2} e_{3} & -e_{1} e_{2} e_{3} & -N e_{1} e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} & 0 & e_{1} e_{2} e_{3} & 0 & e_{1} e_{2} e_{3} & e_{1} e_{2} e_{3} & 0 & N e_{1} e_{2} e_{3} & N e_{1} e_{2} e_{3} & N e_{1} e_{2} e_{3} & N^{2} e_{1} e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} & 0 & e_{1} e_{2} e_{3} & e_{1} e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{2} e_{3} & 0 & 0 & -N e_{1} e_{2} e_{3} & -N e_{1} e_{2} e_{3} & 0 & 0 & -N^{2} e_{1} e_{2} e_{3} & -N^{2} e_{1} e_{2} e_{3} & -N^{2} e_{1} e_{2} e_{3} & -N^{3} e_{1} e_{2} e_{3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & -N e_{4} & 0 & 0 & N^{2} e_{4} & N^{2} e_{4} & N^{2} e_{4} & -N^{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{4} & 0 & 0 & 0 & N^{4} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{4} e_{4} & 0 & 0 & 0 & -N^{5} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{4} & -e_{1} e_{4} & -e_{1} e_{4} & -N e_{1} e_{4} & -N e_{1} e_{4} & 0 & N^{2} e_{1} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{4} & 0 & 0 & -N^{2} e_{1} e_{4} & 0 & 0 & -N^{2} e_{1} e_{4} & -N^{3} e_{1} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{4} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{1} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{4} & 0 & 0 & 0 & N^{3} e_{1} e_{4} & 0 & 0 & N^{3} e_{1} e_{4} & N^{4} e_{1} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{4} & 0 & -N e_{2} e_{4} & 0 & -N e_{2} e_{4} & N^{2} e_{2} e_{4} & 0 & 0 & 0 & 0 & -e_{2} e_{4} & 0 & -N e_{2} e_{4} & 0 & 0 & 0 & N e_{2} e_{4} & -N^{2} e_{2} e_{4} & 0 & -N^{2} e_{2} e_{4} & 0 & -N^{3} e_{2} e_{4} & 0 & 0 & 0 & 0 & -e_{2} e_{4} & 0 & 0 & -N e_{2} e_{4} & 0 & 0 & N e_{2} e_{4} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{2} e_{4} & 0 & 0 & 0 & N^{2} e_{2} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{2} e_{4} & 0 & N^{3} e_{2} e_{4} & 0 & N^{4} e_{2} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{4} & 0 & -N e_{3} e_{4} & -N e_{3} e_{4} & N^{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & N e_{3} e_{4} & N e_{3} e_{4} & N e_{3} e_{4} & N e_{3} e_{4} & 0 & -N^{2} e_{3} e_{4} & -N^{2} e_{3} e_{4} & 0 & 0 & -N^{3} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N e_{3} e_{4} & N e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{3} e_{4} & 0 & N^{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{3} e_{3} e_{4} & N^{3} e_{3} e_{4} & 0 & 0 & N^{4} e_{3} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} & 0 & 0 & -N e_{1} e_{2} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} & 0 & e_{1} e_{2} e_{4} & 0 & 0 & N e_{1} e_{2} e_{4} & 0 & N e_{1} e_{2} e_{4} & N e_{1} e_{2} e_{4} & N^{2} e_{1} e_{2} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{4} & 0 & N e_{1} e_{2} e_{4} & 0 & 0 & 0 & -N e_{1} e_{2} e_{4} & 0 & 0 & -N e_{1} e_{2} e_{4} & 0 & -N e_{1} e_{2} e_{4} & 0 & -N^{2} e_{1} e_{2} e_{4} & 0 & -N^{2} e_{1} e_{2} e_{4} & -N^{2} e_{1} e_{2} e_{4} & -N^{3} e_{1} e_{2} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{4} & 0 & -N e_{1} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{3} e_{4} & -e_{1} e_{3} e_{4} & 0 & 0 & 0 & N e_{1} e_{3} e_{4} & N e_{1} e_{3} e_{4} & 0 & N e_{1} e_{3} e_{4} & N^{2} e_{1} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{3} e_{4} & -e_{1} e_{3} e_{4} & 0 & e_{1} e_{3} e_{4} & 0 & -e_{1} e_{3} e_{4} & 0 & 0 & 0 & N e_{1} e_{3} e_{4} & 0 & -N e_{1} e_{3} e_{4} & 0 & 0 & 0 & 0 & -N e_{1} e_{3} e_{4} & -N e_{1} e_{3} e_{4} & 0 & 0 & -N^{2} e_{1} e_{3} e_{4} & -N^{2} e_{1} e_{3} e_{4} & 0 & -N^{2} e_{1} e_{3} e_{4} & -N^{3} e_{1} e_{3} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{4} & -N e_{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{2} e_{3} e_{4} & -e_{2} e_{3} e_{4} & -e_{2} e_{3} e_{4} & N e_{2} e_{3} e_{4} & N e_{2} e_{3} e_{4} & N e_{2} e_{3} e_{4} & 0 & N^{2} e_{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{2} e_{3} e_{4} & 0 & e_{2} e_{3} e_{4} & 0 & e_{2} e_{3} e_{4} & e_{2} e_{3} e_{4} & N e_{2} e_{3} e_{4} & 0 & -N e_{2} e_{3} e_{4} & 0 & -N e_{2} e_{3} e_{4} & -N e_{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{2} e_{3} e_{4} & -N^{2} e_{2} e_{3} e_{4} & -N^{2} e_{2} e_{3} e_{4} & 0 & -N^{3} e_{2} e_{3} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} e_{4} & -e_{1} e_{2} e_{3} e_{4} & -e_{1} e_{2} e_{3} e_{4} & -e_{1} e_{2} e_{3} e_{4} & -N e_{1} e_{2} e_{3} e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} e_{4} & 0 & e_{1} e_{2} e_{3} e_{4} & 0 & e_{1} e_{2} e_{3} e_{4} & e_{1} e_{2} e_{3} e_{4} & 0 & e_{1} e_{2} e_{3} e_{4} & e_{1} e_{2} e_{3} e_{4} & e_{1} e_{2} e_{3} e_{4} & 0 & N e_{1} e_{2} e_{3} e_{4} & N e_{1} e_{2} e_{3} e_{4} & N e_{1} e_{2} e_{3} e_{4} & N e_{1} e_{2} e_{3} e_{4} & N^{2} e_{1} e_{2} e_{3} e_{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{5} & -N e_{5} & 0 & 0 & 0 & N^{2} e_{5} & 0 & 0 & 0 & 0 & 0 & -N^{3} e_{5} & -N^{3} e_{5} & -N^{3} e_{5} & -N^{3} e_{5} & N^{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{4} e_{5} & 0 & 0 & 0 & 0 & -N^{5} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{5} & -e_{1} e_{5} & -e_{1} e_{5} & -e_{1} e_{5} & -N e_{1} e_{5} & 0 & 0 & N e_{1} e_{5} & N e_{1} e_{5} & N e_{1} e_{5} & N^{2} e_{1} e_{5} & N^{2} e_{1} e_{5} & N^{2} e_{1} e_{5} & 0 & -N^{3} e_{1} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{5} & 0 & 0 & 0 & N^{3} e_{1} e_{5} & 0 & 0 & 0 & N^{3} e_{1} e_{5} & N^{4} e_{1} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{5} & 0 & 0 & -N e_{2} e_{5} & N e_{2} e_{5} & N e_{2} e_{5} & 0 & 0 & 0 & N^{2} e_{2} e_{5} & N^{2} e_{2} e_{5} & 0 & N^{2} e_{2} e_{5} & -N^{3} e_{2} e_{5} & 0 & 0 & 0 & 0 & 0 & -e_{2} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{2} e_{5} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{2} e_{5} & N^{3} e_{2} e_{5} & 0 & 0 & N^{3} e_{2} e_{5} & 0 & N^{4} e_{2} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{5} & 0 & 0 & -N e_{3} e_{5} & 0 & -N e_{3} e_{5} & 0 & 0 & N^{2} e_{3} e_{5} & 0 & N^{2} e_{3} e_{5} & N^{2} e_{3} e_{5} & -N^{3} e_{3} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N e_{3} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{3} e_{5} & 0 & 0 & 0 & -N^{2} e_{3} e_{5} & 0 & 0 & -N^{2} e_{3} e_{5} & 0 & N^{3} e_{3} e_{5} & 0 & N^{3} e_{3} e_{5} & 0 & 0 & N^{4} e_{3} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} e_{5} & 0 & 0 & -N e_{4} e_{5} & 0 & -N e_{4} e_{5} & -N e_{4} e_{5} & 0 & N^{2} e_{4} e_{5} & N^{2} e_{4} e_{5} & N^{2} e_{4} e_{5} & -N^{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{4} e_{5} & -N^{2} e_{4} e_{5} & -N^{2} e_{4} e_{5} & -N^{2} e_{4} e_{5} & 0 & -N^{2} e_{4} e_{5} & -N^{2} e_{4} e_{5} & 0 & 0 & N^{3} e_{4} e_{5} & N^{3} e_{4} e_{5} & 0 & 0 & 0 & N^{4} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{5} & -e_{1} e_{2} e_{5} & -e_{1} e_{2} e_{5} & -e_{1} e_{2} e_{5} & -e_{1} e_{2} e_{5} & 0 & -N e_{1} e_{2} e_{5} & -N e_{1} e_{2} e_{5} & 0 & 0 & N^{2} e_{1} e_{2} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{5} & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{2} e_{5} & 0 & 0 & -N e_{1} e_{2} e_{5} & 0 & 0 & 0 & -N^{2} e_{1} e_{2} e_{5} & 0 & 0 & -N^{2} e_{1} e_{2} e_{5} & -N^{2} e_{1} e_{2} e_{5} & -N^{3} e_{1} e_{2} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{5} & 0 & 0 & 0 & -e_{1} e_{3} e_{5} & -N e_{1} e_{3} e_{5} & 0 & -N e_{1} e_{3} e_{5} & 0 & N^{2} e_{1} e_{3} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{3} e_{5} & 0 & -e_{1} e_{3} e_{5} & 0 & 0 & 0 & e_{1} e_{3} e_{5} & 0 & -N e_{1} e_{3} e_{5} & 0 & 0 & 0 & N e_{1} e_{3} e_{5} & -N e_{1} e_{3} e_{5} & 0 & 0 & 0 & -N^{2} e_{1} e_{3} e_{5} & 0 & -N^{2} e_{1} e_{3} e_{5} & 0 & -N^{2} e_{1} e_{3} e_{5} & -N^{3} e_{1} e_{3} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{4} e_{5} & 0 & 0 & 0 & 0 & -N e_{1} e_{4} e_{5} & -N e_{1} e_{4} e_{5} & 0 & N^{2} e_{1} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{4} e_{5} & e_{1} e_{4} e_{5} & e_{1} e_{4} e_{5} & e_{1} e_{4} e_{5} & 0 & 0 & N e_{1} e_{4} e_{5} & N e_{1} e_{4} e_{5} & N e_{1} e_{4} e_{5} & N e_{1} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{1} e_{4} e_{5} & -N^{2} e_{1} e_{4} e_{5} & 0 & 0 & -N^{2} e_{1} e_{4} e_{5} & -N^{3} e_{1} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{5} & 0 & 0 & -N e_{2} e_{3} e_{5} & 0 & 0 & -N e_{2} e_{3} e_{5} & N^{2} e_{2} e_{3} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{5} & 0 & e_{2} e_{3} e_{5} & 0 & 0 & 0 & -N e_{2} e_{3} e_{5} & 0 & -N e_{2} e_{3} e_{5} & 0 & 0 & 0 & 0 & N e_{2} e_{3} e_{5} & N e_{2} e_{3} e_{5} & -N^{2} e_{2} e_{3} e_{5} & 0 & -N^{2} e_{2} e_{3} e_{5} & -N^{2} e_{2} e_{3} e_{5} & 0 & -N^{3} e_{2} e_{3} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{4} e_{5} & 0 & 0 & -N e_{2} e_{4} e_{5} & 0 & -N e_{2} e_{4} e_{5} & N^{2} e_{2} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{2} e_{4} e_{5} & -e_{2} e_{4} e_{5} & 0 & 0 & 0 & 0 & N e_{2} e_{4} e_{5} & N e_{2} e_{4} e_{5} & 0 & 0 & 0 & N e_{2} e_{4} e_{5} & N e_{2} e_{4} e_{5} & 0 & N e_{2} e_{4} e_{5} & -N^{2} e_{2} e_{4} e_{5} & -N^{2} e_{2} e_{4} e_{5} & 0 & -N^{2} e_{2} e_{4} e_{5} & 0 & -N^{3} e_{2} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{4} e_{5} & 0 & 0 & -N e_{3} e_{4} e_{5} & -N e_{3} e_{4} e_{5} & N^{2} e_{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{3} e_{4} e_{5} & -e_{3} e_{4} e_{5} & -e_{3} e_{4} e_{5} & 0 & 0 & 0 & N e_{3} e_{4} e_{5} & N e_{3} e_{4} e_{5} & N e_{3} e_{4} e_{5} & N e_{3} e_{4} e_{5} & N e_{3} e_{4} e_{5} & N e_{3} e_{4} e_{5} & 0 & -N^{2} e_{3} e_{4} e_{5} & -N^{2} e_{3} e_{4} e_{5} & -N^{2} e_{3} e_{4} e_{5} & 0 & 0 & -N^{3} e_{3} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{5} & 0 & 0 & 0 & -N e_{1} e_{2} e_{3} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{5} & 0 & e_{1} e_{2} e_{3} e_{5} & 0 & 0 & e_{1} e_{2} e_{3} e_{5} & 0 & 0 & 0 & N e_{1} e_{2} e_{3} e_{5} & 0 & N e_{1} e_{2} e_{3} e_{5} & N e_{1} e_{2} e_{3} e_{5} & N e_{1} e_{2} e_{3} e_{5} & N^{2} e_{1} e_{2} e_{3} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} e_{5} & 0 & 0 & -N e_{1} e_{2} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{4} e_{5} & -e_{1} e_{2} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N e_{1} e_{2} e_{4} e_{5} & N e_{1} e_{2} e_{4} e_{5} & 0 & N e_{1} e_{2} e_{4} e_{5} & N e_{1} e_{2} e_{4} e_{5} & N^{2} e_{1} e_{2} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{4} e_{5} & 0 & -N e_{1} e_{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{3} e_{4} e_{5} & -e_{1} e_{3} e_{4} e_{5} & -e_{1} e_{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & N e_{1} e_{3} e_{4} e_{5} & N e_{1} e_{3} e_{4} e_{5} & N e_{1} e_{3} e_{4} e_{5} & 0 & N e_{1} e_{3} e_{4} e_{5} & N^{2} e_{1} e_{3} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{4} e_{5} & -N e_{2} e_{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{2} e_{3} e_{4} e_{5} & -e_{2} e_{3} e_{4} e_{5} & -e_{2} e_{3} e_{4} e_{5} & -e_{2} e_{3} e_{4} e_{5} & N e_{2} e_{3} e_{4} e_{5} & N e_{2} e_{3} e_{4} e_{5} & N e_{2} e_{3} e_{4} e_{5} & N e_{2} e_{3} e_{4} e_{5} & 0 & N^{2} e_{2} e_{3} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{4} e_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{2} e_{3} e_{4} e_{5} & -e_{1} e_{2} e_{3} e_{4} e_{5} & -e_{1} e_{2} e_{3} e_{4} e_{5} & -e_{1} e_{2} e_{3} e_{4} e_{5} & -e_{1} e_{2} e_{3} e_{4} e_{5} & -N e_{1} e_{2} e_{3} e_{4} e_{5} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{6} & -N e_{6} & 0 & 0 & 0 & 0 & N^{2} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{3} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{4} e_{6} & N^{4} e_{6} & N^{4} e_{6} & N^{4} e_{6} & N^{4} e_{6} & -N^{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{6} & -e_{1} e_{6} & -e_{1} e_{6} & -e_{1} e_{6} & -e_{1} e_{6} & -N e_{1} e_{6} & 0 & 0 & 0 & N e_{1} e_{6} & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{6} & 0 & 0 & 0 & 0 & 0 & -N^{2} e_{1} e_{6} & -N^{2} e_{1} e_{6} & -N^{2} e_{1} e_{6} & -N^{2} e_{1} e_{6} & -N^{3} e_{1} e_{6} & -N^{3} e_{1} e_{6} & -N^{3} e_{1} e_{6} & -N^{3} e_{1} e_{6} & 0 & N^{4} e_{1} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{6} & 0 & 0 & 0 & -N e_{2} e_{6} & N e_{2} e_{6} & N e_{2} e_{6} & N e_{2} e_{6} & -N e_{2} e_{6} & 0 & 0 & 0 & 0 & 0 & N^{2} e_{2} e_{6} & 0 & 0 & -N^{2} e_{2} e_{6} & -N^{2} e_{2} e_{6} & -N^{2} e_{2} e_{6} & 0 & 0 & 0 & 0 & -N^{3} e_{2} e_{6} & -N^{3} e_{2} e_{6} & -N^{3} e_{2} e_{6} & 0 & -N^{3} e_{2} e_{6} & N^{4} e_{2} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{6} & 0 & 0 & 0 & -N e_{3} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{3} e_{6} & -N^{2} e_{3} e_{6} & -N^{2} e_{3} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N^{3} e_{3} e_{6} & -N^{3} e_{3} e_{6} & 0 & -N^{3} e_{3} e_{6} & -N^{3} e_{3} e_{6} & N^{4} e_{3} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} e_{6} & 0 & 0 & 0 & -N e_{4} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{4} e_{6} & 0 & N^{2} e_{4} e_{6} & 0 & 0 & N^{2} e_{4} e_{6} & 0 & 0 & 0 & -N^{3} e_{4} e_{6} & 0 & -N^{3} e_{4} e_{6} & -N^{3} e_{4} e_{6} & -N^{3} e_{4} e_{6} & N^{4} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{5} e_{6} & 0 & 0 & 0 & -N e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & N^{2} e_{5} e_{6} & 0 & N^{2} e_{5} e_{6} & N^{2} e_{5} e_{6} & 0 & N^{2} e_{5} e_{6} & N^{2} e_{5} e_{6} & N^{2} e_{5} e_{6} & 0 & -N^{3} e_{5} e_{6} & -N^{3} e_{5} e_{6} & -N^{3} e_{5} e_{6} & -N^{3} e_{5} e_{6} & N^{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{6} & -e_{1} e_{2} e_{6} & -e_{1} e_{2} e_{6} & -e_{1} e_{2} e_{6} & 0 & 0 & 0 & e_{1} e_{2} e_{6} & e_{1} e_{2} e_{6} & e_{1} e_{2} e_{6} & -N e_{1} e_{2} e_{6} & 0 & 0 & N e_{1} e_{2} e_{6} & N e_{1} e_{2} e_{6} & N e_{1} e_{2} e_{6} & N e_{1} e_{2} e_{6} & N e_{1} e_{2} e_{6} & N e_{1} e_{2} e_{6} & 0 & N^{2} e_{1} e_{2} e_{6} & N^{2} e_{1} e_{2} e_{6} & N^{2} e_{1} e_{2} e_{6} & 0 & 0 & -N^{3} e_{1} e_{2} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{6} & 0 & 0 & -e_{1} e_{3} e_{6} & e_{1} e_{3} e_{6} & e_{1} e_{3} e_{6} & 0 & 0 & 0 & -N e_{1} e_{3} e_{6} & N e_{1} e_{3} e_{6} & N e_{1} e_{3} e_{6} & 0 & 0 & 0 & N e_{1} e_{3} e_{6} & N e_{1} e_{3} e_{6} & 0 & N e_{1} e_{3} e_{6} & N^{2} e_{1} e_{3} e_{6} & N^{2} e_{1} e_{3} e_{6} & 0 & N^{2} e_{1} e_{3} e_{6} & 0 & -N^{3} e_{1} e_{3} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{4} e_{6} & 0 & 0 & -e_{1} e_{4} e_{6} & 0 & -e_{1} e_{4} e_{6} & 0 & 0 & 0 & -N e_{1} e_{4} e_{6} & 0 & -N e_{1} e_{4} e_{6} & 0 & 0 & 0 & 0 & N e_{1} e_{4} e_{6} & N e_{1} e_{4} e_{6} & N^{2} e_{1} e_{4} e_{6} & 0 & N^{2} e_{1} e_{4} e_{6} & N^{2} e_{1} e_{4} e_{6} & 0 & -N^{3} e_{1} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{5} e_{6} & 0 & 0 & -e_{1} e_{5} e_{6} & 0 & -e_{1} e_{5} e_{6} & -e_{1} e_{5} e_{6} & 0 & 0 & -N e_{1} e_{5} e_{6} & 0 & -N e_{1} e_{5} e_{6} & -N e_{1} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & N^{2} e_{1} e_{5} e_{6} & N^{2} e_{1} e_{5} e_{6} & N^{2} e_{1} e_{5} e_{6} & 0 & -N^{3} e_{1} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{6} & -e_{2} e_{3} e_{6} & -e_{2} e_{3} e_{6} & -e_{2} e_{3} e_{6} & -e_{2} e_{3} e_{6} & 0 & -N e_{2} e_{3} e_{6} & N e_{2} e_{3} e_{6} & N e_{2} e_{3} e_{6} & N e_{2} e_{3} e_{6} & N e_{2} e_{3} e_{6} & 0 & 0 & 0 & 0 & 0 & N^{2} e_{2} e_{3} e_{6} & N^{2} e_{2} e_{3} e_{6} & 0 & 0 & N^{2} e_{2} e_{3} e_{6} & -N^{3} e_{2} e_{3} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{4} e_{6} & 0 & 0 & 0 & -e_{2} e_{4} e_{6} & 0 & -N e_{2} e_{4} e_{6} & 0 & 0 & 0 & N e_{2} e_{4} e_{6} & -N e_{2} e_{4} e_{6} & 0 & 0 & 0 & N^{2} e_{2} e_{4} e_{6} & 0 & N^{2} e_{2} e_{4} e_{6} & 0 & N^{2} e_{2} e_{4} e_{6} & -N^{3} e_{2} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & -N e_{2} e_{5} e_{6} & 0 & 0 & 0 & 0 & -N e_{2} e_{5} e_{6} & -N e_{2} e_{5} e_{6} & 0 & 0 & N^{2} e_{2} e_{5} e_{6} & N^{2} e_{2} e_{5} e_{6} & 0 & N^{2} e_{2} e_{5} e_{6} & -N^{3} e_{2} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{4} e_{6} & 0 & 0 & 0 & 0 & 0 & -N e_{3} e_{4} e_{6} & 0 & 0 & -N e_{3} e_{4} e_{6} & 0 & 0 & 0 & N^{2} e_{3} e_{4} e_{6} & 0 & 0 & N^{2} e_{3} e_{4} e_{6} & N^{2} e_{3} e_{4} e_{6} & -N^{3} e_{3} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & -N e_{3} e_{5} e_{6} & 0 & 0 & -N e_{3} e_{5} e_{6} & 0 & -N e_{3} e_{5} e_{6} & 0 & N^{2} e_{3} e_{5} e_{6} & 0 & N^{2} e_{3} e_{5} e_{6} & N^{2} e_{3} e_{5} e_{6} & -N^{3} e_{3} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & -N e_{4} e_{5} e_{6} & 0 & 0 & -N e_{4} e_{5} e_{6} & -N e_{4} e_{5} e_{6} & 0 & 0 & N^{2} e_{4} e_{5} e_{6} & N^{2} e_{4} e_{5} e_{6} & N^{2} e_{4} e_{5} e_{6} & -N^{3} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{6} & -e_{1} e_{2} e_{3} e_{6} & -e_{1} e_{2} e_{3} e_{6} & -e_{1} e_{2} e_{3} e_{6} & -e_{1} e_{2} e_{3} e_{6} & 0 & -e_{1} e_{2} e_{3} e_{6} & -e_{1} e_{2} e_{3} e_{6} & 0 & 0 & -N e_{1} e_{2} e_{3} e_{6} & -N e_{1} e_{2} e_{3} e_{6} & 0 & 0 & 0 & N^{2} e_{1} e_{2} e_{3} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} e_{6} & 0 & 0 & 0 & -e_{1} e_{2} e_{4} e_{6} & 0 & 0 & -e_{1} e_{2} e_{4} e_{6} & 0 & -N e_{1} e_{2} e_{4} e_{6} & 0 & -N e_{1} e_{2} e_{4} e_{6} & 0 & 0 & N^{2} e_{1} e_{2} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{2} e_{5} e_{6} & -N e_{1} e_{2} e_{5} e_{6} & 0 & 0 & N^{2} e_{1} e_{2} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{4} e_{6} & 0 & 0 & 0 & 0 & 0 & -e_{1} e_{3} e_{4} e_{6} & -N e_{1} e_{3} e_{4} e_{6} & 0 & 0 & -N e_{1} e_{3} e_{4} e_{6} & 0 & N^{2} e_{1} e_{3} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{3} e_{5} e_{6} & 0 & -N e_{1} e_{3} e_{5} e_{6} & 0 & N^{2} e_{1} e_{3} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{4} e_{5} e_{6} & 0 & 0 & 0 & 0 & 0 & 0 & -N e_{1} e_{4} e_{5} e_{6} & -N e_{1} e_{4} e_{5} e_{6} & 0 & N^{2} e_{1} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{4} e_{6} & 0 & 0 & 0 & -N e_{2} e_{3} e_{4} e_{6} & 0 & 0 & 0 & -N e_{2} e_{3} e_{4} e_{6} & N^{2} e_{2} e_{3} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{5} e_{6} & 0 & 0 & 0 & -N e_{2} e_{3} e_{5} e_{6} & 0 & 0 & -N e_{2} e_{3} e_{5} e_{6} & N^{2} e_{2} e_{3} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{4} e_{5} e_{6} & 0 & 0 & 0 & -N e_{2} e_{4} e_{5} e_{6} & 0 & -N e_{2} e_{4} e_{5} e_{6} & N^{2} e_{2} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{3} e_{4} e_{5} e_{6} & 0 & 0 & 0 & -N e_{3} e_{4} e_{5} e_{6} & -N e_{3} e_{4} e_{5} e_{6} & N^{2} e_{3} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{4} e_{6} & 0 & 0 & 0 & 0 & -N e_{1} e_{2} e_{3} e_{4} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{5} e_{6} & 0 & 0 & 0 & -N e_{1} e_{2} e_{3} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{4} e_{5} e_{6} & 0 & 0 & -N e_{1} e_{2} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{3} e_{4} e_{5} e_{6} & 0 & -N e_{1} e_{3} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{2} e_{3} e_{4} e_{5} e_{6} & -N e_{2} e_{3} e_{4} e_{5} e_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{1} e_{2} e_{3} e_{4} e_{5} e_{6} \end{array}\right)
开放探讨 ¶
-
对于现在扩展维纳的问题都是 n=2 或者是 n=3 时候的模板题,对于更高维的情况,可以编写自动化的脚本来完整自动选择关系、自动构造格等步骤,比如上述内容就是自动生成的。但是对于 n 每增加 1,矩阵则是指数倍增加,因为这是一个 2^n * 2^n 的矩阵,这时候直接调用
sagemath
中的LLL()
变得非常缓慢,大约 n=8 的情况已经运行不出来了,我曾尝试寻找LLL
在 CUDA 上的并行算法或是一些其他优化方案实现,但是都是找到了论文没有给出源码的情况。如果您对这方面有所研究或者有什么更好的优化方法,欢迎联系我(Xenny)一起进行更加深入的探讨。
EXP¶
-
考虑到不是每个人都需要深入研究扩展维纳攻击,这里还是给出 n=2 时候的 EXP 以供使用
e1 = ... e2 = ... N = ... a = 5/14 D = diagonal_matrix(ZZ, [N, int(N^(1/2)), int(N^(1+a)), 1]) M = matrix(ZZ, [[1, -N, 0, N^2], [0, e1, -e1, -e1*N], [0, 0, e2, -e2*N], [0, 0, 0, e1*e2]])*D L = M.LLL() t = vector(ZZ, L[0]) x = t * M^(-1) phi = int(x[1]/x[0]*e1)